(脳血管及び心血管) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
血液粘稠度	48. 264 - 65. 371	56. 693	0
コレステロール結晶	56. 749 - 67. 522	69. 959	0
血中脂質量	0. 481 - 1. 043	0. 992	- O
血管抵抗	0. 327 - 0. 937	1. 451	Ū
血管弾性	1. 672 - 1. 978	1. 746	
心筋血液消費 (量)	0. 192 - 0. 412	0. 433	Ū
心筋灌流量	4. 832 - 5. 147	4. 967	O O
心筋酸素消費量	3. 321 - 4. 244	5. 593	
心拍出血液量	1. 338 - 1. 672	1. 117	
左室拍出インピーダンス	0. 669 - 1. 544	1. 873	
左心室有効ポンプ能力	1. 554 - 1. 988	1. 887	
冠状動脈弾性	1. 553 - 2. 187	2. 121	
冠状動脈灌流圧	11. 719 - 18. 418	18. 264	D
脳血管弾性	0. 708 - 1. 942	0. 795	
脳組織血液供給状態	6. 138 - 21. 396	16.6	

全四甘淮·	三三 通常	常(-)	■■ やや異常	(+)
参照基準:	中和	星度の異常(++)■	■ 深刻な異	常(+++)

血液粘稠度: 48. 264-65. 371(-) 65. 371-69. 645(+)

69. 645–73. 673 (++) >73. 673 (+++)

コレステロール結晶: 56.749-67.522(-) 67.522-69.447(+)

69. 447–74. 927 (+++) >74. 927 (+++)

血中脂質量: 0.481-1.043(-) 1.043-1.669(+)

1. 669–1. 892 (++) >1. 892 (+++)

血管抵抗: 0.327-0.937(-) 0.937-1.543(+)

1. 543–1. 857 (++) >1. 857 (+++)

血管弾性:	1. 672-1. 978 (-) 1. 511-1. 047 (++)	1. 672–1. 511 (+) <1. 047 (+++)
心筋血液消費(量):	0. 192-0. 412 (-) 0. 571-0. 716 (++)	0. 412-0. 571 (+) >0. 716 (+++)
心筋灌流量:	4. 832–5. 147 (–) 4. 029–4. 177 (++)	4. 177–4. 832 (+) <4. 029 (+++)
心筋酸素消費量︰	3. 321–4. 244 (–) 5. 847–6. 472 (++)	4. 244–5. 847 (+) >6. 472 (+++)
心拍出血液量:	1. 338–1. 672 (–) 0. 139–0. 647 (++)	0. 647–1. 338 (+) <0. 139 (+++)
左室拍出インピーダンス:	0. 669–1. 544 (–) 2. 037–2. 417 (++)	1. 544–2. 037 (+) >2. 417 (+++)
左心室有効ポンプ能力:	1. 554–1. 988 (–) 0. 597–1. 076 (++)	1. 076-1. 554 (+) <0. 597 (+++)
冠状動脈弾性:	1. 553–2. 187 (–) 0. 983–1. 182 (++)	1. 182–1. 553 (+) <0. 983 (+++)
冠状動脈灌流圧:	<8. 481 (+++) 18. 418-21. 274 (++)	8. 481–11. 719 (++) >21. 274 (+++)
脳血管弾性:	0. 708–1. 942 (–) 0. 109–0. 431 (++)	0. 431-0. 708 (+) <0. 109 (+++)
脳組織血液供給状態:	6. 138–21. 396 (–) 1. 214–3. 219 (++)	3. 219-6. 138 (+) <1. 214 (+++)

項目の説明

血液粘稠度(N): ヘモレオロジーの基本指標は、血液分子の内部摩擦を意味します。 過粘稠状態:血液粘度が高く、血流が影響を受けます。高粘度を伴う高血圧の患者さん は、脳卒中やその他、脳血管発作を患っている傾向にあります。高粘度を伴う冠状動脈 性疾患の患者さんは、心筋梗塞などの傾向があります。

血管内の血流は、層状流という層流状態にあります。流れは血管壁付近では遅くなり、中央で最速となります。このように、せん断速度が大きいほどスロープが大きく流れが速くなり、血液粘稠度が低くなります。せん断速度が小さいほどスロープが小さく、流れが遅くなり、血液粘稠度が高くなります。

コレステロール結晶:

- (1) 原発性高コレステロール血液・軽度のアテローム性動脈硬化症の前兆・血流うっ帯型狭心痛・痰うっ血型狭心痛などで増加がみられます。
- (2) 免疫低下・栄養失調・心機能不全・気虚と陰虚型狭心痛・陽気欠乏型狭心痛などで減少が見られます。

血中脂質量:血中脂質量異常は、原発性異常と続発性異常に分けられます。

- 1. 原発性高リポ蛋白血症: 一部の環境的要因 (食事療法・栄養素・薬物など)や原因不明の遺伝子突然変異により引き起こされた高リポ蛋白血症を意味します。
- 2. 続発性高リポ蛋白血症: 糖尿病を起因とする高脂血症・甲状腺機能不全・ネフローゼ

症候群・慢性腎不全や急性腎不全などの、系統疾患や薬物を原因とする高脂血症を意味 します。

- (1) 特発性高脂血症・アテローム性動脈硬化症・血流うっ帯型狭心痛などで増加がみられます。
- (2) フェライト免疫低下・気虚と陰虚型狭心痛などで減少が見られます。
- (3) 大脳動脈酸素含量の低下・軽度の虚血性脳血管疾患の前兆で減少が見られます。

血管抵抗:

血管の長さに正比例し、血管の口径に反比例します。中度収縮期や拡張期・血圧・軽度の高血圧・心臓と脾臓をともに欠乏した不眠症・痰熱内部錯乱型不眠症などで増加がみられます。

血管弾性: 収縮期拍出中の動脈血管弾性の拡大範囲を意味します。

要因: (1) SV (1回の拍出量)。SVが大きいほどFEK (カリウム排泄率)が大きい。(2)排出速度。排出速度が速いほどFEKは小さい。(3)血管弾性の低下。

SVの低さ、排出速度の速さ、FEKの少なさで血管硬化の可能性をみることが可能です。単一のパラメータでは判断しません。血管弾性の増加は、中度収縮期血圧・軽度拡張期血圧・軽度に増加した脈圧や若干高い血圧に見られます。 又、軽度のアテローム性動脈硬化症・冠状動脈性疾患・血流うっ帯型狭心痛・陽気欠乏型狭心痛などで減少が見られます。

心筋血液消費(量):心臓の冠動脈かん流の1分当たりに必要な血液量。

心筋灌流量:心臓の冠動脈かん流の1分当たりに流れている実際の血液量。

心筋酸素消費量:心臓の1分あたりの酸素消費量(ml)。

要因: 3つの側面

- (1) 心拍数:心拍数が速くて、HOVが大きい
- (2) 肺炎の収縮性:肺炎収縮性が強くて、HOVが大きい
- (3) 肺炎の収縮時間:収縮時間が長いほど、HOVが大きい
- このように、低い酸素消費と高い心仕事が最善の状態となります。

心拍出血液量:心臓のそれぞれの鼓動により産出された血液量

要因:5つの側面

- (1) 有効循環血液量 (BV): 血液量が不十分のとき、循環された血液量が少なくてSVが減少。
- (2) 肺炎の収縮性の弱化: 収縮性が低くて、圧が低いので、拍出された血液量が減少する
- (3) 心室充満の範囲: 肺炎の弾性の範囲で、充満の度合いが大きいと収縮が大きくな
- り、SVが増加。通常の心腔の容量は173mlだが、全ての血液が拍出されるわけではなく、左心室の血液量は、全体の容量の約60% -70%にあたる125ml前後です。通常、日本人の平均SVは、80-90mlです。
- (4) 周辺血管抵抗(PR)のサイズ。PRが大きい場合、SVが減少。PRが小さい場合、SVが増加。
- (5) 心室壁運動

心室が収縮するとき、肺炎は協調された運動を行います。肺炎の収縮が協調されていないと、SVが減少します。例えば、肺炎梗塞の患者さんは、一部、梗塞を患っている方もいますので、肺炎の収縮性は不一致になりSVが減少します。しかし、通常では心室壁運動が異常であることはありません。

左室拍出インピーダンス:左心室流出経路の抵抗状態の指標

要因:

- (1) 流出経路に外傷があるかどうかという行為。大動脈口狭窄症やその他の状態でVERが増加する可能性があり
- (2) 流出経路に外傷がない場合でも、大動脈血液の排出速度が遅いのでVERが増加します
- (3) 血管抵抗全体が大きい場合

左心室有効ポンプ能力:左室の血液の有効ストロークの収縮力の値

普通の方: 1.8キログラム。ポンプ動力が弱く収縮が大きくないので、肺炎の線維に問題

がある場合があります。ポンプ動力が強く収縮性が良いので、拍出された血液量が十分です。

要因: 4つの側面

- (1) 心室充満の範囲: 弾性の範囲で、充満の度合いが大きいと収縮性が大きくなる為、充満の度合いと収縮性は正比例します。範囲外の場合、心筋は大きく拡大するものの収縮性が減少します。このように充満の正確な値が、収縮性に影響を及ぼす要因となります。
- (2) 有効循環血液量 (循環された血液量 BV): 循環された血液量が少ないと、充満が不十分になり収縮性はない。循環された血液量が十分で充満状態だと収縮性が大きい。
- (3) 肺炎層自体の機能状態: 肺炎層の外傷の有無。例えば、肺炎。 肺炎の細胞が損傷していて、肺炎の弾性が減少しているので、収縮性が低くなります。
- (4) 通常の血液度合いと肺炎層自体の酸素供給:血液と酸素供給が不十分なので、収縮性が低くなります。肺炎の酸素消費:心臓の1分当たりの酸素消費ミリリットル値。

冠状動脈弾性:

生命力の源泉は心臓で、体に栄養を与える血液は、絶えず心臓の鼓動によって流れます。しかしながら、心臓も栄養のある血液を要求します。冠状動脈、すなわち心臓にある3つの血管が、それぞれ血液と酸素を心臓に供給します。冠状動脈は、心臓に血液を供給することに特化した動脈です。コレステロールやその他の物質が血管に蓄積されると、血管空洞が狭まるか遮断され、血流は狭くなり遮断され、心虚血 や冠状動脈性疾患、すなわち、冠状動脈アテローム性動脈硬化症という一連の症候を引き起こします。冠状動脈性疾患は、冠動脈心疾患とも呼ばれます。過度の脂肪沈着は、アテローム性動脈硬化症 や弾性弱化という結果を伴います。動脈血管壁誘発の心血管や脳血管疾患による人間の死亡率は、人口全体の死亡率の過半数を超過しています。

冠状動脈の弾性弱化を招く危険要因: 高脂質症・喫煙・糖尿病・肥満・高血圧・運動不足・ 精神的疲れ・冠状動脈性疾患の家族歴・経口避妊薬など。

冠状動脈灌流圧:血液供給における心臓の冠状動脈圧は、拡張期血圧と左心房圧に影響を受けます。

心筋虚血症の一部や全体に対する不十分な肺炎の血液供給は、心筋梗塞につながる場合があります。

脳血管弾性:

脳を管理している脳動脈や頚動脈に外傷がある場合、頭蓋内の血液循環異常や脳組織の 損傷につながります。硬化された脳血管は弾性が弱まり、血管空洞が狭まりますので、 脳血栓になりやすくなります。脳動脈硬化症を患っている患者さんが過剰に飲酒した 後、血圧が急激に高くなり血管が破裂する場合があり、脳出血を発症する傾向がありります。アルコールを飲んだ後、血液中のアルコール濃度は30分で限界に達することもあります。アルコールとトリグリセリドの合成を活性化させます。このようにしてアテローム性動脈硬化症や脳血管疾患にフロールとトリグリセリドの合成を活性化させます。このようにしてアテローム性動脈硬化症や脳血管疾患は、できます。急性脳血管疾患に分けることができます。急性脳血管疾患には、一過性虚血性発作・脳血栓・脳塞栓・高血圧性脳症・脳助脈症・脳動脈の症候群・パーキンソン病などが含まれます。一般的に知られている脳血管疾患は血症候群・パーキンソン病などが含まれます。一般的に知られている脳血管疾患は性脳血管疾患を急性脳血管疾患は人命を危険にさらす場合が多く、容易に注意を喚起する事ができます。慢性脳血管疾患は病状が長期にわたるため、気づかない場合が多々あります。

脳組織血液供給状態:

脳組織の血液供給は、主に脳を管理する脳動脈や頚動脈に依存します。脳血管疾患は、それぞれの性質により2つのカテゴリーに分けることができます。その1つが虚血性脳血管疾患で、もう一方は出血性脳血管疾患です。診療所において虚血性脳血管疾患の症例はありふれており、脳血管疾患を患っている患者さんは全体の70%から80%を占めます。脳動脈硬化症やその他の理由により、脳動脈の血管空洞が狭まり血流は減少、または完全に遮断されます。脳血液循環には障害が起き、脳組織が損傷しますので、一連の症候が起きます。出血性脳血管疾患は、主に長期高血圧・先天性脳血管奇形やその他の要因を起因とします。血管破裂・流血・脳組織圧迫や遮断された血液循環により、患者さんには、頭蓋内圧の増加・失見当識やその他の症候がよく見られます。このような患者さ

んは、脳血管疾患を患っている患者さん全体の20%から30%を占めます。

(胃腸機能) 分析レポート

名前:事例(女性) 性別:女性 年齡:31

体型: 165cm, 62kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
ペプシン分泌係数	59. 847 - 65. 234	58. 717	0
胃蠕動悸能係数	58. 425 - 61. 213	58. 071	
胃吸収機能係数	34. 367 - 35. 642	35. 142	
小腸蠕動悸能係数	133. 437 - 140. 476	133. 541	0
小腸吸収機能係数	3. 572 - 6. 483	3. 344	

参照基準: 通常(-) ● やや異常(+) → マ刻な異常(++) → マ刻な異常(++)

ペプシン分泌係数: 59.847-65.234(-) 58.236-59.847(+)

55. 347–58. 236 (++) <55. 347 (+++)

胃蠕動悸能係数: 58.425-61.213(-) 56.729-58.425(+)

53. 103–56. 729 (++) <53. 103 (+++)

胃吸収機能係数: 34.367-35.642(-) 31.467-34.367(+)

28. 203–31. 467 (++) <28. 203 (+++)

小腸蠕動悸能係数: 133. 437-140. 476(-) 126. 749-133. 437(+)

124. 321–126. 749 (++) <124. 321 (+++)

小腸吸収機能係数: 3.572-6.483(-) 3.109-3.572(+)

2. 203–3. 109 (++) <2. 203 (+++)

項目の説明

ペプシン分泌係数:

胃には2種類の導管腺があり、その1つは胃腺で主に消化液を分泌します。もう一方は噴門腺で、噴門の粘液を保護するために主に粘液を分泌します。胃腺は3種類の細胞で構成されています。胃腺頸部粘液細胞、主細胞と壁細胞で、胃腺頸部粘液細胞は粘液を分泌し、皮質の表面と皮質下に位置します。主細胞は消化液を分泌し、腺の中央と頸部粘液細胞下に位置します。また消化液は主にペプシンを含みます。壁細胞は塩酸、すなわち胃酸を分泌し、噴門の閉鎖部である胃の最深部に位置し、腺腔と伝達する多くの小導管を含みます。

胃蠕動悸能係数:

胃壁上に斜紋・環状と縦走平滑筋があり、これらが収縮や弛緩することで、胃は蠕動が 可能となります。胃蠕動は、処理を進めるために食品をすりつぶすとともに、食品を薄 粥という糜粥の一種にするための胃液としての役割も担います。そして幽門を通じてまとめて小腸から糜粥が拍出されます。食品が胃の中で処理される時間は様々です。炭水化物食品の処理時間は蛋白食品の処理時間より短く、脂質や油質の食品は処理が最もかかるので油質の食品を食べた後は簡単に空腹にはなりません。食品は胃運動 (蠕動)や胃液(粘液・胃酸・プロテアーゼなど)により事前に消化されており、ペースト(糜粥)を形成するために胃によって分解されます。その後3-4時間くらいで小腸(十二指腸・空腸や回腸含む)に入ります。

胃吸収機能係数:

胃粘膜内の胃腺は、無色で透明な酸性胃液を分泌します。また、成人の胃腺は、1日あたり、1.5-2.5リットルの胃液を分泌できます。胃液は主に3つの主要成分を含みます。それはペプシン、塩酸と粘液です。ペプシンは食品内のタンパク質をプロテオースとプロテアーゼなどの小さな分子に分解することができます。胃酸は塩酸です。胃酸は無活性のプロテアーゼを活性ペプシンに変更することができ、胃に入りこむバクテリアを食品で消滅させる機能ができるので、ペプシン用に最適な酸性環境を作り出す機能があります。胃酸は小腸に入った後、膵液や胆汁、小腸液の分泌を刺激することができます。胃酸が作り出す酸性環境は、小腸が鉄分やカルシウムを吸収することができます。また胃のための保護効果を有しているため、胃酸の糜爛や胃粘膜用のペプシンも減少させることができます。

小腸蠕動悸能係数:

小腸蠕動は固有の運動であり、主に環状筋との律動性収縮、弛緩の交代運動状態にあります。

機能: 糜粥と消化液が化学的に消化できる様、混ぜます。吸収を活性化させるために、腸壁付近で糜粥を作ります。その為、血液の逆流とリンパを活性化させるために腸壁を圧搾します。

小腸吸収機能係数:

- (1) 砂糖:砂糖は一般的に吸収される単糖に分解され吸収されます。又、わずかですが二糖類としても吸収されます。
- (2) タンパク質: 50-100グラムのアミノ酸・微量のジプペチドとトリペプチドが毎日吸収されます。
- (3) 脂質: 混合型の小さなミセルが微絨毛に辿り着くと腸内には胆汁塩が残り、脂質消化産物(脂肪酸・モノグリセリド・コレステロールとリゾレシチン)が細胞に分散されます。そのなかの中短鎖脂肪酸(<10-120) はエステル化を必要としない為、絨毛の毛細管内に直接分散されます。その他の脂質消化産物は小胞体内でエステル化され、トリグリセリド(長鎖脂肪酸 + グリセリド)・コレステロールエステルとレシチンを形成します。当該消化産物は、アポタンパク質・アポリポタンパク質(腸管上皮細胞により合成)と結合し、乳糜脂粒となります。乳糜脂粒は、更にCG内の分泌顆粒に詰め込まれ、エキソサイトーシスが胸管に入れるように促します。そしてリンパ管に吸収されて、最後に血液循環に入ります。
- (4) 水の吸収: 水は、腸(浸透)内で栄養素と電解質が吸収されることで形成される浸透圧 勾配により吸収されます。

(大腸機能) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 165cm, 62kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
大腸蠕動悸能係数	4. 572 - 6. 483	4. 808	
結腸吸収係数	2. 946 - 3. 815	2. 145	
腸内細菌係数	1. 734 - 2. 621	1. 735	
腔内圧力係数	1. 173 - 2. 297	3. 114	0

参照基準: 通常(-) ゆや異常(+) **運動** 次刻な異常(++)

大腸蠕動悸能係数: 4.572-6.483(-) 3.249-4.572(+)

2. 031-3. 249 (++) <2. 031 (+++)

結腸吸収係数: 2.946-3.815(-) 1.775-2.946(+)

0. 803–1. 775 (++) <0. 803 (+++)

腸内細菌係数: 1.734-2.621(-) 1.046-1.734(+)

0. 237–1. 046 (++) <0. 237 (+++)

腔内圧力係数: 1.173-2.297(-) 2.297-3.341(+)

3. 341-4. 519 (++) >4. 519 (+++)

項目の説明

大腸蠕動悸能係数:

大腸は小腸と似た部分運動と蠕動運動をしますが、速度は遅めです。大腸の主機能は水分の吸収並び便の一時的な保存になります。もし、腸の蠕動速度が遅すぎれば、便の水分を過剰に吸収してしまい便秘の原因となり、排便回数の低下、排便量の低下、硬便、など排せつのトラブルにつながります。

結腸吸収係数:

結腸は水分並びに電解質の吸収機能を担当しており、また電解質濃度を調整します。脂肪の一部は結腸にて加水分解され、上行結腸で吸収、細胞内のカイロミクロンを形成し、基底膜に放出されます。結腸のそれぞれの部分の吸収能力は横行結腸、下行結腸、病理学上の要因となり、大腸炎などは結腸の並びにナトリウムイオンの吸収能力を低下させます。

腸内細菌係数:

腸内細菌は腸内環境を酸性にする場合があります。腸内を酸性にする事で自身の成長を促進し、有害な細菌の成長を抑制することで腸内を健康に保ちます。通常、人体の中の善玉細菌と悪玉最近はバランスが取れていますが、バランスが崩れた場合は病気が待ち構えていることになります。下痢、便秘、消化性潰瘍、硬変患者の場合、腸内細菌の減

少が見られ有害な細菌が増加しています。

腔内圧力係数:

腸内鼓腸(胃腸にガスがたまること)は次の様な原因があります。 1)食品の発酵。通常、回腸や結腸の中に大量の細菌が存在しますが、腸内の糜粥が何らかの理由で長期間とどまった際、細菌活動により糜粥の発酵が起こり、大量のガスが発生。腹部が膨満します 2)吸い込んだ空気 3)腸内ガス吸収壁は通常の場合、腹部導管で吸収されます。疾病により腸内の血行に障害が起き、腔内のガス吸収能力が低下すると鼓腸症となります 4)腸内ガスの排出が何らかの理由で妨げられた時。腸内蠕動運動が低下、または消失した際に腸内から対外にガスを排出する事が出来なくなった事による腹部膨満など。

(肝機能) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 165cm, 62kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
タンパク質代謝	116. 34 - 220. 621	220. 364	0
エネルギー生産機能	0. 713 - 0. 992	0. 799	0
解毒機能	0. 202 - 0. 991	0. 655	
胆汁分泌機能	0. 432 - 0. 826	0. 402	0
肝脂肪含量	0.097 - 0.419	0. 36	

参照基準: 通常(-) ■ やや異常(+) → 中程度の異常(++) ■ 深刻な異常(+++)

タンパク質代謝: 116. 34-220. 621 (-) 90. 36-116. 34 (+)

60. 23-90. 36 (++) <60. 23 (+++)

エネルギー生産機能: 0.713-0.992(-) 0.475-0.713(+)

0. 381-0. 475 (++) <0. 381 (+++)

解毒機能: 0. 202-0. 991 (-) 0. 094-0. 202 (+)

0. 043-0. 094 (++) <0. 043 (+++)

胆汁分泌機能: 0.432-0.826(-) 0.358-0.432(+)

0. 132-0. 358 (++) <0. 132 (+++)

肝脂肪含量: 0.097-0.419(-) 0.419-0.582(+)

0. 582-0. 692 (+++) >0. 692 (+++)

項目の説明

タンパク質代謝:

食品内のタンパク質は消化された腸管に吸収されて、転化と再生成を行うために肝臓に送られます。異なる型のアミノ酸は必要な細胞を製造するために、様々なタンパク質から生成されます。さらに肝臓は無用なタンパク質をアミノ酸へと分解し、腎臓や腸管から排泄されるために、最終的に尿素へ変更されます。

エネルギー生産機能:

炭水化物が消化された後、肝臓は細胞に必要なエネルギーを生産するために糖分の代謝を行います。それから脂肪用として過剰な糖分をグリコーゲンへと変換します。 脂肪質の食品が消化された後で、肝臓はさらに脂質をエネルギーへと変換します。

解毒機能:

|食物は消化や代謝過程において多少の毒素を生成します。肝臓は、酵素の解毒と同様に

危険物質(アルコールとアンモニア)を無害の物質(尿素・水や二酸化炭素など)へと分解するために解毒を実行し、体外へ排泄させます。

胆汁分泌機能:

胆汁は肝臓の代謝の最終の産物で、持って消化する脂肪の役割はおよび人体を促して脂肪溶性のビタミンのA、D、E、Kの吸収に対する。 すぎる胆汁は送って胆 は貯蔵した、用意するため効用がほしかった。

肝脂肪含量:

肝脂肪含量が湿重量の5%、または顕微鏡の下で肝生検が脂肪滴を有している肝臓細胞の単位面積1/3を超過する場合、その肝臓は脂肪肝と呼ばれます。脂肪肝は様々な原因により、肝臓細胞内に脂肪が蓄積されることを意味する肝臓脂肪変性としても知られています。健全な人が健康的な食事を摂取するときに、肝脂肪含量は肝臓の重さの5%とされています。B-USは、肝脂肪含量が30%を超過した脂肪肝を検出することができます。

脂肪肝は過栄養性脂肪肝、アルコール性脂肪肝、糖尿病脂肪肝に分けられます。これらが、脂肪肝でよくある3つの原因です。さらに栄養障害脂肪肝、薬物性脂肪肝、急性妊娠脂肪肝などがあります。脂肪肝の症候は、何でしょうか?軽度の脂肪肝を患っている人には、不快を全く感じないこともあります。中等症・重症の脂肪肝を患っている患者さんは、食欲不振・疲労・吐き気・嘔吐・腹部膨満・下痢・肝臓痛・左肩と背痛や腫大及びその他の症候が、肝臓肥大については健康診断で発見される場合もあります。また、わずかですが黄疸とクモ状血管腫がある肝臓もあります。異常肝臓機能、トリグリセリドやコレステロール増加は、検体検査で発見することができます。早期診断と迅速な治療は、脂肪肝の進行を効果的に管理することを可能にし、肝臓内の脂肪沈着を色あせさせることも可能です。

(胆嚢機能) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
血清グロブリン (A/G)	126 - 159	139. 479	0
総ビリルビン量(TBIL)	0. 232 - 0. 686	0. 276	Ū
アルカリホスファターゼ(ALP)	0. 082 - 0. 342	0. 202	0
血清総胆汁酸(TBA)	0. 317 - 0. 695	0. 642	0
ビリルビン (DBIL)	0. 218 - 0. 549	0. 419	0

検査項目の説明:

- 1. 血清グロブリン: A/G 健康基準: (126~159)
 - 1. >159, 血清グロブリンより上の場合 体内の免疫過多、硬変、肝炎、肝氣鬱滞、心気症からくる痛み、肝胆湿熱
 - 2. 〈126, 血清グロブリン より下の場合 中程度の肝臓並びに胆嚢関する違和感、肝気虚
- II. 総ビリルビン量: TBIL 健康基準: (0.232~0.686)
 - 1. >0.686, 血液中の総ビリルビン量より上の場合 溶血性黄疸、TG wet-type 黄疸など
 - 2. <0.2332, 血液中の総ビリルビン量より下の場合 免疫不全や存在的な肝臓並びに胆嚢疾患
- III. アルカリホスファターゼ: ALP 健康基準: (0.082~0.342)
 - 1. >0.342, より上の場合 肝臓内外の閉塞性黄疸、中程度の肝炎、肝胆湿熱、 心気症から来る痛み, 湿熱 黄疸 など
 - 2. <0.082, より下の場合 存在的な中程度の肝炎、未病状態並びに免疫の低下
- IV. 血清総胆汁酸: TBA 健康基準: (0.317~0.695)
 - 1. >0.695, より上の場合 中程度の肝炎、中程度の閉塞性黄疸、肝胆湿熱など
 - 2. <0.317, より下の場合 潜在的な中程度の肝臓並びに胆嚢疾患、未病状態
- V. ビリルビン: DBIL 健康基準: (0.218~0.549)
 - 1. >0.549, より上は陽性 閉塞性黄疸、肝細胞性黄疸、肝胆湿黄疸など
 - 2. <0.218, より下は陰性 溶血性黄疸、黄疸など

(膵機能) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
インシュリン	2. 845 - 4. 017	4. 006	
膵臓ポリペプチド(PP)	3. 210 - 6. 854	4. 456	
グルカゴン	2. 412 - 2. 974	2. 442	0

検査項目の説明:

I. インシュリン: 健康基準: 2.845~4.017

インシュリンはアミノ酸からなるペプチドホルモンです。様々な役割を持ちますが、 主に血糖値を下げる役割を持ちます。

機能: 1. ぶどう糖を代謝し、肝臓、筋肉、脂肪組織がぶどう糖を使用する促進をし、, グリコーゲン並びに筋肉グリコーゲンの合成を促す。グルコース新生(糖新生)を抑制し、ぶどう糖が脂肪組織に貯蔵できる様、脂肪酸に変換する。; 2. 脂質代謝に関して、リパーゼ(脂肪分解酵素)を抑制する事で脂肪分解を抑制する; 3. タンパク質の代謝に関してはタンパク質の合成、タンパク質の分解を抑制する。インシュリンが欠乏した場合や使用できなくなった場合、糖尿病を発症する。

- II. 膵臓ポリペプチド (PP): 健康基準: 3.210~6.854
 - 1. >6.854, より上の場合
 - (1) 糖尿病患者: (2) 急性膵炎: (3) 膵臓腫瘍: (4) 硬変、慢性腎臓病患者: (5) その他: 膵臓ポリペプチド細胞肥大症、心筋梗塞、深刻な心不全、非心原性ショック、十二指腸腫瘍
 - 2. <3.210, より下の場合
 - (1) 肥満; (2) 慢性膵臓炎、膵臓ポリペプチドは健康な人間より明らかに少ない; (3) 迷走神経に関する損傷の指標としても使用する。また膵臓ポリペプチドは明らかに減少 している; (4) 成長ホルモン治療に使用された時
- | 111. グルカゴン: 健康基準: 2.412~2.974
 - 1. >2.974, より上の場合 インシュリン抵抗性糖尿病、グルガゴノーマ (脾腫瘍の一つ)
 - 2. <2.412, より下の場合 先天性の細胞欠損

項目の説明

インシュリン:

インシュリンはアミノ酸からなるペプチドホルモンです。様々な役割を持ちますが、主に血糖値を下げる役割を持ちます。

機能: 1. ぶどう糖を代謝し、肝臓、筋肉、脂肪組織がぶどう糖を使用する促進をし、, グリコーゲン並びに筋肉グリコーゲンの合成を促す。グルコース新生(糖新生)を抑制

- し、ぶどう糖が脂肪組織に貯蔵できる様、脂肪酸に変換するこ
- 2. 脂質代謝に関して、リパーゼ (脂肪分解酵素) を抑制する事で脂肪分解を抑制する;
- 3. タンパク質の代謝に関してはタンパク質の合成、タンパク質の分解を抑制する。インシュリンが欠乏した場合や使用できなくなった場合、糖尿病を発症する

膵臓ポリペプチド (PP):

ポリペプチド分泌細胞で合成、放出するホルモンの性質を持ったポリペプチド。

グルカゴン:

膵臓のランゲルハンス島のA細胞で合成、放出され、血糖値を上げる機能を持つ。インシュリンとグルカゴンの血糖調節機能は相互に補完しあう関係にある。

(腎臓 機能) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 165cm, 62kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
ウロビリノーゲン 指標	2. 762 - 5. 424	4. 039	
尿酸指数	1. 435 - 1. 987	1. 979	0
血液尿素窒素(BUN) 指標	4. 725 - 8. 631	8. 587	
蛋白尿 指標	1. 571 - 4. 079	3. 723	0

ウロビリノーゲン 指標: 2.762-5.424(-) 5.424-6.826(+)

6. 826-8. 232 (++) >8. 232 (+++)

尿酸指数: 1.435-1.987(-) 1.987-2.544(+)

2. 544–3. 281 (+++) >3. 281 (+++)

血液尿素窒素 (BUN) 指標: 4.725-8.631(-) 8.631-10.327(+)

10. 327–12. 154 (++) >12. 154 (+++)

蛋白尿 指標: 1.571-4.079(-) 4.079-5.218(+)

5. 218-6. 443 (+++) >6. 443 (+++)

項目の説明

ウロビリノーゲン 指標:

ウロビリノーゲンは、ビリルビン還元の無色の物質です。腸内の細菌作用により形成されます。一部のウロビリノーゲンは、再吸収されて循環器を巡り腎臓から排泄されます。大半のウロビリノーゲンは排泄物とともに排泄され、残りの部分は腸管への肝臓再逆行で吸収されます。そして肝臓から腎臓や血液へと入り、尿とともに体外に排出されます。空気にさらされた後で、ウロビリノーゲンが形成されます。

尿酸指数:

人間の血漿内では、尿酸の基準範囲は3.6 mg/dL (~214 ?mol/L) と8.3 mg/dL (~494 ?mol/L) (1 mg/dL=59.48 ?mol/L)の間となっています。[本範囲は、米国医師会スタイルマニュアルで通常とみなされます。] 血漿内の尿酸濃度で正常範囲を超えたものと下回ったものは、それぞれ尿酸過剰血と低尿酸血として知られています。大半の尿酸は、血液内で溶解し、腎臓まで移動します。腎臓で尿となり体外に出されます。高い尿酸水準の場合、痛風、腎結石や腎不全を発症する人もいます。そして高い尿酸水準は、高血圧、心臓病や慢性腎臓疾患の発症により前に現れる場合もあります。

血液尿素窒素(BUN) 指標:

血液尿素窒素(BUN)は、血液内のタンパク質代謝の老廃物である、尿素窒素の量を測定し

ます。尿素は肝臓により生成され、排出のために血液によって腎臓まで運ばれます。アミノ酸脱アミノ化は、アンモニアと二酸化炭素を生成します。これが肝臓内で尿素と合成されます。尿素のグラム当たりのタンパク質代謝は、0.3グラムです。窒素は、尿素内で28/26のほぼ半分の含有量があります。疾患・損傷した腎臓は、血流から尿素を取り除く機能が低下する為、高いBUNの原因となります。循環血液量減少性ショックや鬱血性心不全などの腎かん流が減少した状態においては、BUNの数値が上がります。

蛋白尿 指標:

生命活動を行っている血液内には常に一定のタンパク質が必要となります。タンパク質の一部は、腎臓内の糸球体によってろ過されて尿へと入ります。又、血液への尿細管再逆行によって吸収される場合もあります。その為、腎臓の機能が通常である場合、尿内のタンパク質は、わずかとなります。しかしながら、腎臓とカテーテル漏れが障害物を発生させると、大量のタンパク質が蛋白尿になります。通常、健康な人の尿内には、微量のタンパク質があります。正常範囲は陰性と定義され、又、0.15g/24hを超える尿内のタンパク質は蛋白尿と呼ばれて、陽性と判定される場合があります。

(肺機能) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 165cm, 62kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
肺活量 VC	3348 - 3529	3504	
全肺気量 TLC	4301 - 4782	4591	- O
気道抵抗 RAM	1. 374 - 1. 709	1. 515	0
動脈血酸素含有量 PaCO2	17. 903 - 21. 012	20. 29	0

検査項目の説明:

I. 肺活量: VC 健康基準: (3348~3529)

1. >3529, より上の場合

中程度の上気道感染、中程度の慢性気管支炎、寒さによる咳、熱さによる咳、肺に溜まったたんを吐き出す為の咳など

- 2. <3348, より下の場合 中程度の慢性気管支炎、慢性閉塞性肺気腫、肺陰不足の咳、など
- II. 全肺気量: TLC 健康基準: (4301~4782)
 - 1.>4728. 中程度の肺気腫

息切れ、肺胞の拡大、肺-脾気虚による肺膨張、熱痰による肺膨張、etc.

2. <4301, 肺組織に重篤な障害

慢性 気管支炎、中気道の感染、乾熱による肺萎縮、肺気虚、寒さによる肺萎縮、 etc.

- III. 気道抵抗: RAM 健康基準: (1.374~1.709)
 - 1. >1.709, より上の場合

慢性閉塞性肺気腫、慢性気管支炎、気管支ぜんそくの早期症状、肺並びに腎氣不足、 肺膨張、痰濁阻肺肺膨張など

2. <1.374. より下の場合

中程度の中気道炎、気管支炎、痰湿壅肺や寒さによる咳など

- IV. 動脈血酸素含有量: PaCO2 健康基準: (17.903~21.012)
 - 1. >21.012, より上の場合

免疫低下、病原体による肺気虚

2. <17.903. より下の場合

不健康な気道、慢性閉塞性肺気腫、気管支ぜんそくの早期症状、寒さによる喘鳴、熱さによる喘鳴、風寒東肺によるぜんそく症、肺湿熱によるぜんそく症、熱痰によるぜんそく症、 痰飲伏肺による肺膨張, 肺腎臓気虚による肺膨張など

(脳神経) 分析レポート

名前:事例(女性) 性別:女性 年齡:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
脳組織血液供給状態	143. 37 - 210. 81	175. 363	0
脳動脈硬化症	0. 103 - 0. 642	0. 603	0
脳神経機能	0. 253 - 0. 659	0. 32	0
感情指標	0. 109 - 0. 351	0. 145	0
記憶指標(ZS)	0. 442 - 0. 817	0. 694	0

1. 脳組織血液供給状態: 脳に対する血液供給状態を反映

軽度の血液供給不足 110.24--143.37

中程度の血液供給不足 100.41--110.24

深刻な血液供給不足 <100.41

11. 脳動脈硬化症: 動脈血流抵抗並びに脳動脈硬化症の度合いを反映

軽度の硬化 0.642--0.757

中程度の硬化 0.757--0.941

深刻な効果 >0.941

III. 脳神経機能: 計算能力、理解能力、認識能力、配置能力、指揮能力や痴ほう症など

軽度の障害 0.115--0.253

中程度の障害 0.053--0.115

深刻な障害 <0.053

IV. 感情指標: 脳細胞に対する外傷の度合いを反映

軽度0.351--0.483中度0.483--0.699

深刻 >0.699

V. 記憶指標(ZS): 記憶能力を反映

軽度の衰退 0. 262--0. 442 中程度の衰退 0. 169--0. 262

深刻な衰退 <0.169

項目の説明

脳組織血液供給状態:

脳微小循環は、通常直径が〈150mの血管を意味します。これには、小動脈・毛細管と小静脈が含まれます。しかしながら、微小循環の定義は広く受け入れられたものではありません。また、小動脈(解剖学の基準に基づく内径 > 150メートル)が微小循環に属するのかどうかも明確にはされていません。その為、定義は血管生理機能に従っています。すなわち、直径や構造に従って定義されているというよりも単血管の内腔への高い圧がかかった時の反応で定義されています。本定義に従うと、微小循環に含まれものは高い圧に対して筋原収縮反応がある内径・毛細管や小静脈を有する、全ての動脈となります。微小循環の原発性機能は、組織変更内で栄養素や酸素の供給を行うことと需要の変更です。重要な役割の2番目は毛細管の交換の障壁として、毛細管内の激烈な変動の静水圧を避けることにあります。そして、最後に静水圧は、微小循環水準において著しく減少します。このように、微小循環には周辺抵抗の合計を決定するという極めて重要な役割があります。さらに微小循環は、心血管疾患の最初の疾患部でもあります。特に炎症課程。

脳動脈硬化症:

アテローム性動脈硬化症による、様々な動脈炎症、その他の物理的要因、又は血液疾患を起因とする外傷と局所脳血管障害、血流抵抗は、虚血性脳血管疾患を引き起こす可能性を高めます。(1)脳血管アテローム性動脈硬化症に関連する疾患、又は一過性、虚血性及び局所性脳組織損傷を起因とする一過性虚血性発作の機能障害です。(2)脳血栓は血栓の遮断を起因とします。(3)脳塞栓は様々な疾患を原因とする塞栓が血液に入り、脳内の血管を遮断することにより誘発されるものです。診療所において、心臓病はもっともありふれた病名です。その他では、順に脂質が破損後に血液に入りこむことや外傷、卵や細菌感染、気胸やその他の空気塞栓、静脈炎やその他の要因で形成された塞栓が脳血管を遮断することなどがあげられます。その場合、脳表面や脳の最深部にある血管が破裂して脳出血につながり、実際に破裂した血管を起因とする脳出血は、出血性脳血管疾患という症名となります。

脳神経機能:

脳神経系は機能にしたがって、3つの部分に分けることができます。最初の部分は、情報 を体外から脳に伝える部分で感覚神経系と呼ばれています。2番目の部分は処理と蓄積を 実行し、体を反応させる部分で中枢神経系と呼ばれています。脳の大部分がこれにあた ります。3番目の部分は、筋・内部器官や腺を動かす部分で運動神経系と呼ばれ、脳内で の決定を実行します。3番目には、主神経系を含み、行動を起こす前の準備を整えます。 3つの部分の神経細胞間の情報伝達経路2つあります。1つ目は、脳神経細胞間の結合ネッ トワークです。脳神経系には、約1,000億の脳神経細胞があり、ほぼ全ての人が同じ数を 保有しています。人が他の人よりも賢いかどうかは脳神経細胞間の結合ネットワークの 数に左右されます。各脳神経細胞は1,000-200,000のその他の脳神経細胞と連結されてい ます。その平均は15,000です。2つ目は神経伝達物質です。脳神経細胞内でのメッセージ 送信は、電子グアニジンラインによりますが、2つの脳神経細胞間のメッセージ送信は、 体により製造された神経伝達物質と呼ばれる生体や化学物質によって行われます。脳神 経細胞は、脳神経細胞同士の結合間のすき間に神経伝達物質の一種を放出します。連結 された15,000の脳神経細胞は、神経伝達物質を受け取った後で関連性のある電子グア= ジンラインを生産します。この手順は繰り返され、連結された15.000の脳神経細胞は、 絶えずメッセージをその他の連結された15,000の脳神経細胞に送ります。現在では神経 伝達物質は80種類以上が確認されています。しかし主な神経伝達物質はわずか8、9種類 しかありません。当該神経伝達物質は、状態を維持したり変更したりするために体の 様々な部分を動かします。また、当該神経伝達物質は、感情の決定因子でもあります。

感情指標:

感情は、目的に対する人生経験の反応であり、要求が満たされたかどうかを表します。 感情は陽性感情と陰性感情の2種類に分けられます。陽性感情は、免疫機能を高め、健康 を促進させることができる為、結果として生活の質を改善します。怒り・悲しみ・不 安・憤慨・無関心などが含まれる陰性感情は、心身の健康にとって有害なものです。生 理学上・心理学上の研究と生活実践によれば、負の感情は疾患や疾患の悪化を誘発する ことがあり、また陽性感情は薬物治療の効果を減少させることもあるとの研究結果が出

ています。年配者は健康状態が衰退し、体内や対外からの疾患誘因要因への抵抗力が減 少しますので、様々な疾患に感染しやすくなります。一般的な疾患としては、高血圧・ 心臓病・潰瘍性疾患・糖尿病や癌などが含まれます。様々な疾患・不健康な状態や死の 脅威があるため、年配者は陰性感情や悲観的な精神に陥る傾向があります。 また、やる 気を失ったり意気消沈したりすることで、心身の協調が損なわれるという意識が働くた め、体は緊張状態になり免疫力が弱まります。そのため、疾患の状態が悪くなったり悪 化したりします。年配者は病気になった後、様々な圧力をおいますが、さらに家族・社 会や医療担当者にも多大な負担をもたらします。年配者の陰性感情を陽性感情へと変え ることができれば、年配者の疾患抵抗や生活改善への自信、生活の質を高める手助けと なります。感情状態は心理学上の要因の一種です。心理学上の要因はその他の要因とは 異なり、体への損害は直接明らかにされずに隠れた性質を持っています。目に見えない 要因であるがために、容易に見逃してしまう事が多々あります。最新の医学理論と臨床 診療は、純粋な生体医療型から派生して、「生体 - 心理学上の - 社会的な」有機結合 という新型の生体医療型へと進化してきました。 心理学上から直接アプローチすること で患者さんの陰性感情を取り除きます。これは、疾患の予防と治療にかなり有益なもの です。我々の考えとしては以下の分類があります。不安と欲求不満は、脳の恐怖センタ 一の活動過多に直接関係するものです。うつ病には2つの形態があり、その1つは反応性 で、もう一方は内在性です。反応性のうつ病は、友人や親戚の死、自宅での火事、仕事 の失敗、配偶者の不貞や離婚などといった、生活上の出来事の後でよく起こりえます。 そして、通常は消沈した感情は、あまり長期間持続せずに他者の助けを以って回復でき ます。内因性うつ病は、長期の生活において無意識に発生し、これには不幸な結婚生 活、困難な人生、慢性疾患を患っていること、上司への不満、長期にわたる低評価・障 害を持ったお子さんをかかえていることなどが含まれます。

記憶指標(ZS):

記憶指数は、人の記憶力を反映します。脳動脈硬化症・脳萎縮症やその他の症状は、脳 への血液供給を不十分にします。脳内における海馬細胞の機能衰退は、年配者にとって 記憶衰退の組織学的な理由です。記憶は、2種類に分けられます。その1つが聴覚記憶で す。これは、他者が話したり読んだりすることを人は耳を通して覚えているというもの です。もう1つは視覚記憶です。これは見ることを通して人は覚えているというもので す。記憶手段は人によって異なります。耳を通して覚えることが得意な人にとって、記 憶は聴覚型です。そして目を通して覚えることが得意な人にとって、記憶は視覚型で す。記憶は瞬間記憶力・短期記憶と長期記憶に分けることができます。人は精神の内に 記憶を長期間保つ必要はありません。場合によって、私たちはものごとの時間だけを覚 えていなくてはならない場合があります。しかし、時間が経過した後に忘れることは問 題ありません。別の環境では記憶を精神内に長期間保っていなくてはならない場合もあ ります。それを忘れた場合、深刻な問題が起こり、それまでの研究、人生や仕事におい て望まない結果を招く事となります。物忘れはどのようにして起こるのでしょうか?そ れには理由が2つあります。1つは記憶の薄れです。これは元ある知識を忘れて常に思い 出せる状態ではないことです。これが続くと記憶は徐々に薄まり、ついには消失しま す。これは紙の上にあるインクみたいなものです。このインク(記憶)は、常に着色さ れているわけではないので、インクの色は薄かったり濃かったりしています。2つ目の理 由は干渉によるものです。これは、記憶の中には様々な出来事があり、それらが重なり 合っているので見分けがつかない状態です。つまり何か出来事を思い出したいけどすぐ には思い出せずに、繰り返し思い出すことで徐々に思い出される状態がこれに該当しま す。

(骨疾患) 分析レポート

名前:事例(女性) 性別:女性 年齡:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値
腰椎ヘルニア	No Direction	方向性なし
肩筋肉の接着度	< u 0.2	u 0.18
四肢循環限界	+	+
靭帯年齢	10%-40%	33%

テスト用語説明:

- 1. 腰椎ヘルニア: 身体の一方か付近の隆起へ向かう腰椎線維周期、または髄核隆起を示します。
- 2. 肩筋肉の接着度: 老年者の肩の炎症性病変の度合い、または肩筋肉の接着度を示します。一般的に検出値が小さいほど、良い状態となります。疾患が軽いか疾患がないという証明となります。
- 3. 四肢循環限界: 様々な外部要因による四肢の血液微小循環系の硬度の限界、または循環レベルを示します。一般的に、4+が最も深刻な状態であることを意味します。プラスの値が低いほど良い状態となり、体内の疾患要因の見込みが低い証明となります。
- 4. 靭帯年齢: 上記の4つの指標から得られたデータを統合したパラメータで、結果は一般的に10%から40%となります。値が大きいほど成人病や老化の度合いが高い証明となります。また、逆に値が低いと体格とヒト免疫が強い証明となります。

(骨密度) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 165cm, 62kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
破骨(溶骨)細胞係数	86. 73 - 180. 97	168. 253	
カルシウム損失量	0. 209 - 0. 751	0. 32	0
骨過形成度	0. 046 - 0. 167	0. 365	
骨粗しょう症度	0. 124 - 0. 453	0. 467	
骨密度	0. 796 - 0. 433	0. 494	

破骨(溶骨)細胞係数: 86.73-180.97(-) 180.97-190.37(+)

190. 37–203. 99 (++) >203. 99 (+++)

カルシウム損失量: 0. 209-0. 751 (-) 0. 751-0. 844 (+)

0. 844–0. 987 (++) >0. 987 (+++)

骨過形成度: 0.046-0.167(-) 0.167-0.457(+)

0. 457–0. 989 (+++) >0. 989 (+++)

骨粗しょう症度: 0.124-0.453(-) 0.453-0.525(+)

0. 525-0. 749 (++) >0. 749 (+++)

骨密度: 0.796-0.433(-) 0.433-0.212(+)

0. 165–0. 212 (++) <0. 165 (+++)

項目の説明

破骨(溶骨)細胞係数:

破骨細胞は、直径が100マイクロメートルに達する多核巨細胞から構成されます。多核巨細胞は、2から50個の核を含み、主に骨面や骨血管アクセス付近に配置されています。破骨細胞は、これよりも少ない数で構成されており、複数の単一有核細胞が結合され、細胞が徐々に好酸球性に変更されることにより、細胞質の好塩基性は老化します。

破骨細胞は、特別な吸収機能が備わっています。局所で炎症性病変を吸収することにより大食細胞もまた、骨吸収の過程に関わってきます。骨基質内で有機物やミネラルを吸収する破骨細胞は、基質の表面が不規則になり細胞に似た形の骨小窩を形成します。この骨小窩は、ハウシップと呼ばれます。ハウシップ内で骨に向かった側では、細胞は髪に似た隆起物をたくさん発生させます。この隆起物は、縦断面の縁や上皮細胞の表面の刷子縁に似たものです。電子顕微鏡下では、骨に近い側に不規則な微小絨毛がたくさんあります。これは、波状縁と呼ばれる細胞隆起物です。波状縁層の末梢上に円形細胞質

帯があります。細胞質帯は微細細胞を多少含んでいますが、細胞器官が不足しており、透明帯として知られています。透明帯は、細胞膜が滑らかで骨面に近い場所にあり、細胞質を含む境界壁のようなもので、周囲に微環境を形成します。 破骨細胞は、当該部分に乳酸・クエン酸などを放出します。酸性状態下では、波状縁基質内で飲小胞や飲胞を形成するため、骨無機物ミネラルは波状縁から飲細胞活動をします。破骨細胞内で、無機物の物体は、カルシウムイオンで血流に排出されるため分解されます。無機物の物体が喪失すると骨基質内の膠原線維が曝露します。破骨細胞は、様々なリソゾーム酵素、特にカテプシンBと膠原溶解性カテプシンを分泌します。破骨細胞が骨面を離れると波状縁は消失し、細胞の内部は静止期に突入するために変化します。当該細胞は、成熟・未分割で末期の単核食細胞しか含んでいませんので、血液内の単核細胞や組織内の食細胞は破骨細胞へと形質転換がされることができません。破骨細胞の前駆細胞の対象となるのは、幼若増殖単核食細胞のみです。

カルシウム損失量:

長い間、多くの実業家の活動により、骨粗鬆病の予防・治療法は1つしかないという印象が根付いています。しかし、骨粗鬆病の病因に関する詳細な研究を受けて、最近の医療専門家は、骨粗鬆病の最も多い要因は、カルシウムやビタミンDの補充・ホルモンの影響などの非機械的なものではなく、ヒト神経系の管理下にある筋肉量(筋肉部位の量や筋力含む)が骨強度(骨量や骨構造含む)を決定する最も重要な要因の1つであるということを発見しました。一般に骨カルシウムは、男性で32歳、女性で28歳を過ぎると失われていきます。年齢を重ねるたびに、損失率も増加していきます。60歳になると骨カルシウムは50%が失われます。このように、骨折の予防・骨粗鬆病の予防やカルシウム補充は、今や必要なのです。その結果、食物栄養素は、骨粗鬆病の発生に非常に関係してきます。18歳未満の児童や青年は、1日あたり1200 mgのカルシウム摂取が望まれ、成人は1日あたり800 mgのカルシウム摂取が望まれます。同時に身体がより容易にカルシウムを吸収できることを助成するために大量のビタミンDが必要となります。

骨過形成度:

骨の状態。骨の成長・発達や機能完了の過程において、正常形状が一部失われます。骨の過形成は様々な形からなり、形が異なるために、それぞれが独自の特性を有しています。例えば、膝関節の過形成は通常「骨棘」を意味します。また、関節内遊離体や軟骨過形成があります。脊椎骨の過形成は、椎体の「唇様」への変更や神経の圧迫が異常四肢感覚や運動異常という結果をもたらすことを主に示します。

骨粗しょう症度:

こちらは、身体全体の骨減少の状態です。骨基質の含有量が著しく減少される一方で、 骨構成内のミネラル(主にカルシウムやリンを含む)成分が基本的に正常であることを 主に示します。言い換えれば、骨粗鬆病において、タンパク質やその他の有機物、骨内 の水分の含有量が減少していても、カルシウム・リンやその他のミネラルの含有量は正常値であるということです。骨基質は、補助の役割を担うとともに、カルシウム・リン やその他のミネラル間の結合という役割も担います。このように、骨基質が減少すると ミネラル間のすき間が増大し、骨粗鬆病と表現されます。骨粗鬆病の進行とともに、骨 内のカルシウム・リンやその他のミネラルもまた継続的に失われたり減少したりしま す。その結果、骨の骨基質やミネラルは減少していきます。老年期の骨粗鬆病は、実際 に長期間のカルシウム不足によって起こるものです。

骨密度:

こちらは、主に骨強度を表します。したがって骨粗鬆病の診断の基準となりますが、骨折の発生の危険性を予測することもできます。閉経後の骨の形質転換には、急変プロセスがありますが、この変化と(患者さんの骨折の発生に対する危険性の予測が可能な)生化学指標は、非常に限定されています。本指標が臨床治療の経過観察や研究の発達に対して多大に悪影響をもたらしています。骨密度と生化学指標は、抗骨粗鬆病の治療や患者さんの骨折の発生に対する危険性の予測を完全に反映できるものではないと研究者は指摘しています。しかし、これ以上に有益な試験指標は現在ありませんので、骨密度が依然として、診断や経過観察に用いる最も一般的な指標として使用されています。骨の形質転換の生化学指標を決定・反映することは、骨粗鬆病の診断と病因学の研究・治療の両側面において、重要な位置づけとされています。

(リウマチ性骨疾患) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
頸部石灰度	421 - 490	518. 78	0
腰椎石灰度	4. 326 - 7. 531	7. 783	
骨過形成係数	2. 954 - 5. 543	5. 734	T.
骨粗しょう症係数	2. 019 - 4. 721	4. 541	0
リウマチ係数	4. 023 - 11. 627	14. 442	T.

項目の説明

頸部石灰度:

頸部骨の過形成の沈着率の大きさを示します。石灰化がないということは、 過形成がないということを意味します。基本的石灰化は、過形成の割合が30%強に達することを意味し、石灰化は過形成の割合が70%強に達することを意味します。

腰椎石灰度:

頸椎骨の過形成の沈着率の大きさを示します。石灰化がないということは、 過形成がないということを意味します。基本的石灰化は、過形成の割合が30%強に達することを意味し、石灰化は過形成の割合が70%強に達することを意味します。

骨過形成係数:

こちらは、骨の状態となります。骨の成長・発達や機能完了の過程において、正常形状が一部失われます。骨の過形成は様々な形からなり、形が異なるために、それぞれが独自の特性を有しています。例えば、膝関節の過形成は通常「骨棘」を意味します。また、関節内遊離体や軟骨過形成があります。脊椎骨の過形成は、椎体の「唇様」への変更や神経の圧迫が異常四肢感覚や運動異常という結果をもたらすことを主に示します。

骨粗しょう症係数:

身体全体の骨減少の状態です。骨基質の含有量が著しく減少される一方で、骨構成内のミネラル(主にカルシウムやリンを含む)成分が基本的に正常であることを主に示します。言い換えれば、骨粗鬆病において、タンパク質やその他の有機物、骨内の水分の含有量が減少してても、カルシウム・リンやその他のミネラルの含有量は正常値であるということです。骨基質は、補助の役割を担うとともに、カルシウム・リンやその他ミネラル間の結合という役割も担います。このように、骨基質が減少するとミネラル間のさいり、骨粗鬆病と表現されます。骨粗鬆病の進行とともに、骨内のカルシウム・リンやその他のミネラルもまた継続的に失われたり減少したりします。その結果、骨の骨基質やミネラルは減少していきます。老年期の骨粗鬆病は、実際に長期間のカルシウム不足によって起こるものです。老年期の骨粗鬆病は、実際に長期間のカルシウム不足によって起こるものです。その結果、食物、胃性で32歳、女性で28歳を過ぎると失われていきます。年齢を重ねるたびに、損失率も増加していきます。60歳になると骨カルシウムは50%が失われます。このように、骨折の予防・骨粗鬆病の予防やカルシウム補充は、今や必要なのです。その結果、食物栄養素は、骨粗鬆病の発生に対してきます。18歳未満の児童や青年は、1日あたり1200 mgのカルシウム摂取が望まれ、成人は1日あたり800 mgのカルシウム摂取が望まれます。同時に身体がより容易

にカルシウムを吸収できることを助成するために大量のビタミンDが必要となります。

リウマチ係数:

リウマチは、広義と狭義に分けられます。広義リウマチは、骨関節やその周辺の柔組織 (筋腱・滑液包・筋膜など) に影響を及ぼしている疾患群を意味します。狭義リウマチ は、A群溶血連鎖球菌を起因とする上気道感染に誘発された結合組織の再発性急性や慢性 全身性炎症性疾患を意味します。最も代表的な症状は心臓や関節病変であり、又、慢性 リウマチ性心臓弁膜症を形成します。

(骨成長) 分析レポート

名前:事例(女性) 性別:女性 年齡:31

体型: 165cm, 62kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
骨型アルカリホスファターゼ	0. 433 - 0. 796	0. 698	
オステオカルシン	0. 525 - 0. 817	0. 566	
長骨の治癒状態	0. 713 - 0. 992	0. 574	
短骨の軟骨治癒状態	0. 202 - 0. 991	0. 105	
成長軟骨版(骨端線)	0. 432 - 0. 826	0. 484	

参照基準:	通常(-)	やや異常(+)
	── 中程度の異常(++)■■■	深刻な異常(+++)

骨型アルカリホスファターゼ: 0.433-0.796(-) 0.319-0.433(+)

0. 126-0. 319 (++) <0. 126 (+++)

オステオカルシン: 0. 525-0. 817 (-) 0. 409-0. 525 (+)

0. 297–0. 409 (++) <0. 297 (+++)

長骨の治癒状態: 0.713-0.992(-) 0.486-0.713(+)

0. 381-0. 475 (++) <0. 381 (+++)

短骨の軟骨治癒状態: 0.202-0.991(-) 0.094-0.202(+)

0. 043-0. 094 (++) <0. 043 (+++)

成長軟骨版(骨端線): 0.432-0.826(-) 0.358-0.432(+)

0. 132-0. 358 (++) <0. 132 (+++)

項目の説明

骨型アルカリホスファターゼ:

骨型アルカリホスファターゼは骨から分泌され、骨細胞の活動や機能の状態に反応する 為、人体の骨の石灰化状態を表す指標になります。

骨のカルシウム沈殿が不足した場合、酵素の分泌が増加し、骨のカルシウム分泌も増加するので、カルシウムの吸収を計測することは(意訳:途中で文が切れてます)

オステオカルシン:

年齢と共に値は変わりますが、オステオカルシンと骨は違うペースで変化していきます。骨の代謝回転率が高ければ、オステオカルシン値も高くなります。原発性骨粗しょう症や、骨粗しょう症(高回転型)ではオステオカルシン値は高くなり、骨粗しょう症(低回転型)ではオステオカルシン値は低くなります。

オステオカルシン値の変化で骨粗しょう症が高回転型か低回転型が判断出来る様になり

ます。

長骨の治癒状態:

通常、四肢を構成する中空で長い骨を指します。中央部の骨幹と骨端から構成されています。骨幹は通常、膜性骨としても知られ、中央の空洞は骨髄が入っています。両端のふくらみは骨端軟骨と呼ばれます。骨端軟骨は表面に付着した軟骨で、隣接した骨との間で関節の表面を形成し、広範囲の動きを可能とします。

短骨の軟骨治癒状態:

円柱状や立方体上の骨で、手首(から先)や足、脊柱後部などに存在します。短骨は非常に強い圧力にも耐える事が出来、その多くは複数の関節表面、関節、靭帯によって支えられる為、構造物に対する適切な柔軟性を形成します。

成長軟骨版(骨端線):

骨端線-成長軟骨板の断面イメージです。成長軟骨板とは長骨の骨幹端と骨端の間にある 円盤状の軟骨です。成長する間、成長軟骨版は徐々に骨化していくと共に段々と薄くなっていきます。時間がたち、思春期が始まると性ホルモンの分泌が始まり、軟骨組織が 隙間を広げながら骨組織への変化していき、すべての骨化が終了すると成長する余地が なくなります。

(血糖値) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
インシュリン 分泌係数	2. 967 - 3. 528	2. 97	
血糖 係数	2. 163 - 7. 321	4. 975	
尿糖 係数	2. 204 - 2. 819	2. 429	0

検査項目の説明:

- 1. インシュリン 分泌係数: 健康基準: 2.967~3.528
 - 1. >3.528. より上の場合

簡単にカロリーを脂肪に変換し体内に貯蔵する事が出来るので肥満になりやすくなります。

2. <2.967. より下の場合

不適切なインシュリン分泌から起こる代謝異常、糖類、タンパク質、脂肪、水、、電解質など。しばしば不適切なインシュリン分泌から酸塩基のバランス障害が見られ、また早期の状態の発見は困難。症状が現れた際は過食症、多尿症、多飲症、飢餓状態、体重の減少、肥満、疲労、脱力感などが現れる。慢性患者はしばしば脳血管及び心血管、腎臓、神経並びに眼疾患を併せて発症する。深刻な場合、患者はケトアシドーシス、高浸透圧性昏睡、乳酸アシドーシスなど命にかかわる症状を発し、併せて膿性感染、泌尿器系の感染、結核などに罹る場合もある。

- 2. 血糖 係数: BG 健康基準: 2.163~7.321
 - 1. >7.321, より上の場合
 - (1) 食後、またはブドウ糖の注射後1~2時間後、または精神的なストレスによるアドレナリンが出ている間、生理学上の値は上昇する。
 - (2) インシュリン分泌不良: 1型または2型糖尿病.
 - (3) ホルモンの分泌が増加すると共に血糖値が上昇する。前脳下垂体並びに副腎皮質の活動過多など。
 - (4) 中枢神経系疾患
 - (5)副腎皮質 活動過多.
 - (6)甲状腺機能亢進症.
 - (7) 嘔吐、下痢、発熱、糖尿病など。ほとんどの症状は中程度の血糖上昇
 - 2. <2.163, より下の場合
 - (1) 生理学上の: 空腹
 - (2)過剰インシュリン分泌:インシュリン機能過剰分泌障害、過剰なインシュリン注射・経口血糖降下薬
 - (3) サイロキシン不適合: 甲状腺機能低下症.
 - (4) Source 、より下の場合 of 血糖: 長期 栄養失調 and 急性 肝臓 injury.
 - (5)Excessive loss of 血糖, genetic 酵素 不足, グリコーゲン synthase 不足, 腎臓-yang 不足 type 糖尿病, etc.
- 3. 尿糖 係数: GLL 健康基準: 2.204~2.819
 - 1. >2.819, 男性的た
 - (1)生理学上の 尿糖: consuming large quantity of 炭水化物 food once, 妊娠後期

- of women and 授乳期.
- (2) Renal 尿糖: renal ぶどう糖 threshold is lower than that of a health person, or the 機能 of renal tubular re吸収 of ぶどう糖 is 減少.
- (3) 病理学上の 尿糖: 糖尿病 and 甲状腺機能亢進症.
- (4) Lung-heat and consumption of fluid type 糖尿病.
- (5)Stomach heat and flaming type 糖尿病.
- (6) 腎臟 yin 不足 type 糖尿病 and so on.
- 2. <2.204, 陰性です

Body health, mild 多飲症, 過食症 and 多尿症, the body 体重の減少 症状s and 未病 state.

項目の説明

インシュリン 分泌係数:

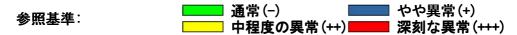
インシュリンは、タンパク質ホルモンの一種です。膵b細胞は、体内のインシュリンに分 泌されます。身体の十二指腸にくわえて、膵臓と呼ばれる長い形の器官があります。多 くの細胞集団が膵臓内に散乱し、その細胞集団は膵島と呼ばれます。膵臓内には、1億か ら2億ほどの膵島があります。膵島細胞は、それぞれのホルモン分泌の機能に従って、以 下に分類されます。(1) 膵島細胞の約60%から80%を占めるB-細胞 (b細胞)は血糖を下げ ることができるインシュリンを分泌します。(2) 膵島細胞の約24% から40%を占めるA細 胞 (a細胞)はインシュリンと相反する役割があるグルカゴンを分泌し、血糖を上げるこ とができます。(3) 膵島細胞の合計数の約6% から15%を占めるD細胞は成長ホルモン分泌 抑制ホルモンを分泌します。ウイルス感染・自己免疫性・遺伝その他の疾患要因によ り、糖尿病の患者さんの病態生理学は、インシュリン活性不足・グルカゴン活性過剰を 起因とします。それはB・A細胞左右相称のホルモン機能不全と呼ばれます。インシュリ ン分泌細胞が少ない内因性インシュリン分泌などの重大な損害や完全欠損しているイン シュリン依存性糖尿病では、外因性インシュリン治療が必要となります。非インシュリ ン依存性糖尿病においては、インシュリン分泌障害は軽度で、基礎インシュリンの濃度 は、正常であるか上昇します。グルコース刺激、すなわち、体重から見たインシュリン 分泌が不足している人と比べると、一般的に低いものとなります。インシュリン分泌の 水準は、インシュリン抵抗性とA細胞機能の両方から影響を受けます。インシュリン分泌 機能は、糖尿病診断・分類・治療・糖尿病を将来患う危険性が高いグループの予後や予 測をする上で重要な基準値を有しています。臨床医、研究者ともに、その基準値を重要 視しています。

血糖 係数:

血糖は、血液内のグルコースを意味します。砂糖・二糖類や多糖類などのその他の糖類は、血液内に入りこむためにグルコースに変換された後でもグルコースと呼ばれることもあります。健康な人体の血液グルコース濃度は、安定した状態にあります。異常に増加したグルコースなどでこの均衡が損なわれると、糖尿病の兆候が見られる様になります。

尿糖 係数:

尿糖は、主に尿内にあるグルコースなどの糖分を意味します。健康な人体の尿糖は少なくて 一般的な方法では測定できませんので、健康な人体の尿糖は、陰性か尿内に全く糖分がありません。健康な人体内においては、血糖が160から180mg/dlを超過した場合のみ、尿糖を形成するために、尿からさらに糖分が排出されます。したがって血糖の水準が尿糖の出現や欠損を決定します。


(微量元素) 分析レポート

名前:事例(女性) 性別:女性 年齡:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
カルシウム	1. 219 - 3. 021	3. 009	
鉄	1. 151 - 1. 847	0. 676	0
亜鉛	1. 143 - 1. 989	1. 777	
セレン	0. 847 - 2. 045	0. 68	
リン	1. 195 - 2. 134	1. 043	
カリウム	0. 689 - 0. 987	0. 986	0
マグネシウム	0. 568 - 0. 992	0. 4	
銅	0. 474 - 0. 749	0. 335	
コバルト	2. 326 - 5. 531	1. 917	
マンガン	0. 497 - 0. 879	0. 856	- O
ョウ素	1. 421 - 5. 490	3. 322	- O
ニッケル	2. 462 - 5. 753	5. 08	0
フッ素	1. 954 - 4. 543	1. 965	0
モリブデン	0. 938 - 1. 712	1. 364	- O
バナジウム	1. 019 - 3. 721	1. 534	0
スズ	1. 023 - 7. 627	1. 411	0
ケイ素	1. 425 - 5. 872	1. 983	
ストロンチウム	1. 142 - 5. 862	1. 45	- O
ホウ素	1. 124 - 3. 453	1. 191	0

カルシウム: 1. 219-3. 021(-)

0. 774-1. 219 (+)

0. 318-0. 774 (++)

<0.318 (+++)

鉄:

1. 151–1. 847 (–)

0. 716–1. 151 (+)

	0. 262-0. 716 (++)	<0. 262 (+++)
亜鉛:	1. 143–1. 989 (–) 0. 532–0. 945 (++)	0. 945–1. 143 (+) <0. 532 (+++)
セレン:	0. 847–2. 045 (–) 0. 545–0. 663 (++)	0. 663–0. 847 (+) <0. 545 (+++)
リン:	1. 195–2. 134 (–) 0. 486–0. 712 (++)	0. 712–1. 195 (+) <0. 486 (+++)
カリウム:	0. 689–0. 987 (–) 0. 256–0. 478 (++)	0. 478–0. 689 (+) <0. 256 (+++)
マグネシウム:	0. 568-0. 992 (-) 0. 079-0. 214 (++)	0. 214-0. 568 (+) <0. 079 (+++)
銅:	0. 474–0. 749 (–) 0. 082–0. 241 (++)	0. 241-0. 474 (+) <0. 082 (+++)
コバルト:	2. 326–5. 531 (–) 0. 632–1. 319 (++)	1. 319–2. 326 (+) <0. 632 (+++)
マンガン:	0. 497–0. 879 (–) 0. 047–0. 229 (++)	0. 229–0. 497 (+) <0. 047 (+++)
ョウ素:	1. 421–5. 490 (–) 0. 741–1. 193 (++)	1. 193–1. 421 (+) <0. 741 (+++)
ニッケル:	2. 462-5. 753 (-) 0. 539-1. 547 (++)	1. 547–2. 462 (+) <0. 539 (+++)
フッ素:	1. 954-4. 543 (-) 0. 512-1. 219 (++)	1. 219–1. 954 (+) <0. 512 (+++)
モリブデン:	0. 938–1. 712 (–) 0. 163–0. 501 (++)	0. 501-0. 938 (+) <0. 163 (+++)
バナジウム:	1. 019–3. 721 (–) 0. 123–0. 498 (++)	0. 498–1. 019 (+) <0. 123 (+++)
スズ:	1. 023-7. 627 (-) 0. 184-0. 578 (++)	0. 578–1. 023 (+) <0. 184 (+++)
ケイ素:	1. 425–5. 872 (–) 0. 613–1. 022 (++)	1. 022–1. 425 (+) <0. 613 (+++)
ストロンチウム:	1. 142–5. 862 (–) 0. 147–0. 661 (++)	0. 661–1. 142 (+) <0. 147 (+++)
ホウ素:	1. 124–3. 453 (–) 0. 243–0. 701 (++)	0. 701–1. 124 (+) <0. 243 (+++)

項目の説明

カルシウム(Ca):

カルシウムは銀白色の結晶の金属元素であり、非常に化合しやすい物質です。例として、動物の骨、貝殻、卵の殻は炭酸カルシウム、リン酸カルシウムなどで出来ています。カルシウムは人体の定在元素であり、5番目に多く含まれる元素です。人体でのカルシウムの役割:

- 1. 人体の骨格を構成し体を支えると共に、筋肉が収縮する際の支点となります。
- 2. 血球内で心拍数の安定、筋肉の収縮、血液の凝固、細胞の接着の重要な役割を果たします。

残念ながら、人体自身で合成する事は出来ず摂取しなければなりません。

鉄(Fe):

鉄は人体内の微量元素の中で5番目に多い元素です。

この物質はヘモグロビン、染色体、酵素の生成に必要であり、また、酸素を運ぶ機能をもっています。鉄不足は貧血、酸素運搬機能の低下、組織低酸素や病気の原因ともなります。健康な成人は体内におおよそ3-5グラムの鉄を持ち、健康な幼児は500ミリグラムを体内にもっています。

亜鉛(Zn):

亜鉛は人体構成にとって重要な微量元素であり、人体中のさまざまな酵素を活性化させる役割をもっています。主要な役割はタンパク質の合成や骨の発育など。新陳代謝を良くし、免疫力を高めてくれます。

亜鉛不足は下記の様な症状を引き起こす場合があります:

- 1. 味覚障害
- 2. 異食症、炭、土、爪、石膏など
- 3. 小人症
- 4. 傷の治りが遅い
- 5. 第二次性徴期の発育不全
- 6. 女性の月経痛や無月経
- 7. 精子運動率と不妊症

セレン(Se):

セレンは人体の必須微量元素のひとつです。セレンはカルシウムを運搬する役割を持ち、骨にカルシウムを定着させます。また、セレンは存在的なフリーラジカル物質を中和するグルタチオンペルオキシダーゼの様な抗酸化酵素を活性化させます。セレンは筋肉(心臓を含む)を健康に保つ為、必要な物質であり、視力、肌、髪の健康を保つ効果があります。

人体でセレンが不足すると、さまざまな症状が現れます。筋肉痛、筋炎、心筋脂肪化 (脂肪蓄積心筋?)、ケシャン症、溶血性貧血、骨変化(カシン-ベック病)など。また、白血球の殺菌能力や細胞性免疫機能も減少します。

リン(P):

ほぼ全ての食品はリンを含みます。食事から十分なリンを摂取できるので、サプリメントは不要です。リンの過剰摂取はミネラルバランスを崩し、カルシウム不足を引き起こします。特に40歳以上の方の場合、腎臓が過剰摂取したリンを排出できなくなり、カルシウム不足となるのです。そこで、肉類の摂取を減らし牛乳と野菜類をより多く摂取することが必要です。

血中内のリンが多すぎるとカルシウムの濃度が低下し、低カルシウム血症を発症する場合があります。低カルシウム血症の症状は、神経興奮性、テタニー(強直) や痙攣などです。兆候としては、1. 骨が脆くなる、 2. 虫歯、 3. カルシウム不足から発生する様々な症状がより明白になる、 4. 神経衰弱、 5. 様々なミネラルバランスが崩れるというものです。

カリウム(K):

カリウム は生物にとって重要な電解質であり、人体における必須多量栄養素です。主に体内の細胞に蓄えられます。成人の体内にあるカリウムの量はおおよそ150 グラムで、主な機能は細胞内液の浸透圧の調整、酸塩基平衡の調整、 神経の伝達作用があります。代謝に重要な役割を持ち、人体の細胞の構造を並びに機能を保ちます。人体の神経並び

に筋肉に伝達作用を向上させ、血圧を下げ、筋肉や神経の働き、特に心臓の動きを正常 化させます。

通常、血清カリウム値は3.5 ~ 5.5 mmol / リットルで、カリウム濃度が3.5 mmol / リットルより低くなると低カリウム血症の症状が現れます。最も目立つ低カリウム血症の症状は神経筋の弛緩や麻痺による四肢の痺れ、特に足に起こります。これはカリウム不足からくる弛緩麻痺と呼ばれます。通常、下肢、得に四頭筋(大腿四頭筋)から始まり、脱力感や立つ事が難しくなったり、階段の上り下りが出来なくなったりする症状が現れます。更にカリウム不足が続くと、筋力の低下が深刻になる場合があります。上半身並びに体幹の筋力が低下し呼吸器系に影響を及ぼし、呼吸不全や心臓血管系の機能不全(例えば胸のしめつけ、動悸、呼吸器筋の麻痺、呼吸困難や深刻な不整脈)を引き起こす場合があります。

マグネシウム(Mg):

マグネシウムはカリウムに次いで重要な栄養素です。マグネシウムはカリウムの量より 少ないですが、様々な生理学上の機能があります。体内の酵素を活性化させ、神経系の 異常興奮を抑制し核酸の構造を保ち、タンパク質の合成に参加し、筋肉の収縮と体温を 調整します。マグネシウムは細胞内外のカリウム、ナトリウム、カルシウムの移動を補 助し、膜電位を保全します。

マグネシウム不足の兆候は情動障害、興奮、テタニー(強直)、反射の低下などです。 通常、マグネシウムを経口で過剰摂取した場合、腎臓が抑制する為、高マグネシウム中 毒になることはありません。ただし腎不全の場合、大量のマグネシウム摂取はマグネシ ウム中毒になり、腹痛、下痢、嘔吐、多飲症、疲労、脱力感、呼吸困難、チアノーゼ、 瞳孔散大など重篤な状態になる事があります。

銅(Cu):

銅不足の兆候は、低色性小球性貧血、発育不良、骨疾患(関節リウマチ、増殖) 、骨 折、腫瘍、肝脾腫(肝肥大)、心血管の損傷、冠動脈性心疾患、脳関門、白斑、女性不 妊症や巻き毛などです。

銅の摂取量が人体必須量の100倍を超えると溶血性の貧血、壊死性肝炎などになります。 銅の中毒症状は流涎症、吐き気、嘔吐、吐血、腹痛、下痢、急性胃腸炎、溶血、血、メ レーナ、血尿、リソゾーム膜の破裂、黄疸、不整脈、肝組織の壊死、腎不全、尿毒症、 ショック症状などです。過剰摂取は更に精神分裂病、てんかん、リウマチ性関節リウマ チに加え、食道がん、胃がん、肝臓がん、肺がんなどの腫瘍の原因となります。銅の中 毒症はジメルカプトプロパノール、フェロシアン化カリウムやチオ硫酸ナトリウムを使 用した胃洗浄で治療します。

コバルト(Co):

コバルトは人体における生体必須元素です。イオンの状態で存在します。コバルトは造血機能に重要な役割を果たすビタミン B12に含まれています。コバルトの人体一日摂取量はおおよそ5 - 45 mgです。過剰摂取は肺炎や心筋の損傷、甲状腺の損傷や赤血球の増加などを引き起こします。また、コバルト60は特定のがんの治療に効果を発揮します。

マンガン(Mn):

マンガン不足は人体の成長に影響を及ぼします。妊娠時にマンガンが不足していた場合、新生児が運動失調症になる可能性が高まります。また、子どもから青年期の人間にマンガンが不足した場合、成長を妨げ、骨格異常をもたらす場合があります。成人のマンガン不足は生殖機能障害につながる場合もあります。海にはマンガンを豊富にありマンガンは人体に重要な役割を持つ必須栄養素ですが、その必要量は非常に少なく、一般人は1日4-9 mg程度。腸によって吸収されます。

マンガンは血液の生成にも拘わりがあります。. 造血メカニズムの中のマンガンの役割は体が銅を利用し、鉄の吸収・利用を助け、赤血球の成熟と放出を助けることです。

ョウ素(1):

ヨウ素は必須微量栄養素です。成人の体内ヨウ素量は20から50ミリグラムで、70%から80%は喉の近くの甲状腺に蓄えられます。残りは筋肉やその他の組織の中にあります。ヨウ素は甲状腺ホルモンの合成に必須な物質であり、不足した場合、甲状腺機能低下症を原因とする身体および精神の発達障害が引き起こされる場合があります。この病気は子供の成長に影響を与えますが、妊娠した女性が甲状腺腫を発病した場合、本人だけでな

く胎児の成長に影響を及ぼします。例えば、生まれた子供に発症する低身長症、難聴、精神遅滞、[クレチン病]とう呼ばれる痴ほう症などです。 成人の甲状腺腫はエネルギー代謝の減少や粘液水腫、心拍数の低下、性機能の減退、顔の腫物、 言語障害、外観上の変化などの原因となります。

ヨウ素の成人日常摂取量はおおよそ100から200ミリグラムであり、1~10歳の子供の場合は60から110ミリグラムです。ヨウ素の過剰摂取はヨウ素甲状腺腫の原因となりますので摂取量はほどほどが良いと思われます。

ヨウ素を豊富に含む食品はケルプ(昆布)、海藻、海の魚、海水塩などの海産物などです。ヨウ素はほとんどの場所の土壌に存在している為、海藻のヨウ素濃度は海水の千倍以上あります。また土壌にある為、野菜や水からも摂取することができます。

ニッケル(Ni):

ニッケルは命にとって必須の元素であり、野菜、穀物、海藻などから主に摂取する事が可能です。ニッケルは自然界に広く存在しますが、人体の中では非常に少ない量しか必要としません。通常、成人には約10mgのニッケルが存在し、一日の必須量は0.3mgです。ニッケル不足は糖尿病、 貧血、硬変、尿毒症、 腎不全や肝臓脂質並びにリン脂質の代謝異常を引き起こす場合があります。動物実験でニッケル不足は成長率の低下、死亡率の上昇、ヘマトクリット、ヘモグロビン、鉄分、骨内カルシウム、肝臓・髪・筋肉・骨・脳内の亜鉛量の低下が認められました。また、不妊症の原因の一つとされています。

フッ素(F):

フッ素は非金属元素です。フッ素の過剰摂取による中毒が引き起こす主な症状は、歯が 黄色または黒くなる、X脚、O脚、脊柱後湾症、腕のこわばりなどです。歯のフッ素症 は中程度の症状、骨のフッ素症はより重篤で勤務・生活能力が失われる場合がありま す。 フッ素症を発症した場合、治療法はなく、薬物療法で進行を遅らせる事しかできま せん。風土病としてのフッ素症は人々の健康に深刻な被害をもたらす病気で、その原因 は飲料水、石炭利用、お茶の3種類があります。

モリブデン(Mo):

モリブデンは必須微量栄養素の一つです。成人の体内総モリブデン量は約9ミリグラムで、人体の組織や体液の中に含まれ、得に肝臓と腎臓に存在します。人体のモリブデン必要量は非常に少ないですが、 モリブデン自体は様々な食品に含まれています。モリブデンは酵素の補欠基として、また触媒として対応する基質を酸化させる機能を持ちます。 モリブデン不足は通常の場合起こりませんが、長期の間、経口で栄養を取っていない患者が発症する場合があります。動物のモリブデン不足は体重、繁殖力の低下、寿命を縮める結果を引き起こします。

バナジウム(V):

バナジウムは必須微量栄養素の一つで、人体の成長と保全に重要な役割を持ち、骨と歯の成長を加速させ、造血作用を促進し、免疫力を向上させます。適切な量のバナジウムは血糖、血圧、脂質を低下させると共に心筋の伸縮性を向上し、心疾患を防止します。現在、研究者が最も注目しているのが血糖降下機能です。インシュリンはブドウ糖の血中濃度を下げる唯一のホルモンです。バナジウムで同じ役割をする事はできませんが、島細胞を守ることにより人体の血糖値を下げることができます。

バナジウムの摂取については通常の食事で1日必要量、約15ミリグラムを摂取する事が可能ですで、サプリメントは必要ありません。ですがバナジウム不足の方、糖尿病患者、コレステロール値の高い方や高血圧の方は食物から積極的に取る様にしましょう。穀物、肉、鶏、家鴨、魚、キュウリ、貝類、キノコ、パセリはバナジウムを豊富に含みます。ただ、人工のバナジウム塩は十分な脂溶性が無くため吸収しにくく、また毒性が高い為、人々の健康に悪い影響を及ぼします。

スズ(Sn):

スズは人間が生きて行く上で必須微量栄養素の一つであり、昔から人間が使って来た元素のひとつです。最近の研究では、スズがタンパク質と核酸の代謝を改善し、成長と形成を促す事がわかってきました。スズ不足は人体、特に子供の成長を遅らせ、深刻な場合は低身長症を引き起こします。

ケイ素(Si):

ケイ素は人体の必須ミネラルであり微量栄養素です。ケイ素が我々の体に柔軟性と弾性をもたらし、我々が皮膚と骨を持つ事を可能にしてくれます。ケイ素は子供の成長に関係すると共に、 老化を防ぐにあたって非常に重要な役割をもっています。その他にケイ素はコラーゲンの増加を促進することで美容効果を発揮します。ケイ素不足では乾燥肌、しわ、ひび割れが出来やくなったりします。加齢と共に各組織のケイ素含有量は徐々に減少していきますので、ケイ素含有量の減少度が老化の指標とでき、ヘルスケアやアンチエンジングに利用する事も出来ます。

人体に対するケイ素の害はケイ素の不足、または過剰なケイ素の摂取で起こります。ケイ素不足は骨粗しょう症、割れやすい爪などの症状を引き起こします。ですが過剰なケイ素摂取は非常に有害であり、例として、長期にわたる二酸化ケイ素を含む埃を吸引した場合に過剰なケイ素摂取となり、珪肺になる事があります。また、体内の過剰なケイ素は巣状糸球体腎炎になる場合があります。

ストロンチウム(Sr):

ストロンチウムは骨の成長と形成を促進する必須微量栄養素です。長い間、人々は骨の成長に関して VD (訳注:ビタミンD?) とカルシウムのみに注目し、ストロンチウムの重要性を無視してきました。最新の研究では人体のストロンチウム不足は代謝異常、脱力感、 発汗、骨格の発育遅延さらには骨粗しょう症などを引き起こす事がわかってきました。

研究の結論として、不足 摂取 of 雑穀類、野菜などが不足している子供達がカルシウムサプリメントを盲目的に摂取しているとストロンチウム不足になる事がわかりました。ストロンチウム不足を解消する為に穀物の厚さ、どの種類の動物の肉と野菜が合うのか注意する必要があります。また医師の指示に従い、カルシウムのサプリメントを牛乳並びに動物の骨と一緒に摂取する方法があります。

ホウ素(B):

ホウ素は果物や野菜の中に存在する微量栄養素の一つです。骨の健康を保ち、カルシウム、リン、マグネシウムの代謝を助ける働きがあります。ホウ素不足は、ビタミン C不足を招きます。またホウ素はテストステロン分泌を促進し、筋力を強化しますのでホウ素はアスリートにとって必須栄養素です。 また、脳機能を改善し反射能力を高めまることも出来ます。ほとんどの人はホウ素不足ではありませんが、老齢の方は適切な量のホウ素を摂取する必要があります。

(ビタミン) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
ビタミン A	0. 346 - 0. 401	0. 399	
ビタミン B1	2. 124 - 4. 192	4. 015	
ビタミン B2	1. 549 - 2. 213	1. 526	
ビタミン B3	14. 477 - 21. 348	11. 689	0
ビタミン B6	0. 824 - 1. 942	1. 734	
ビタミン B12	6. 428 - 21. 396	3. 727	
ビタミン C	4. 543 - 5. 023	4. 372	
ビタミン D3	5. 327 - 7. 109	5. 839	
ビタミン E	4. 826 - 6. 013	4. 831	
ビタミン K	0. 717 - 1. 486	1. 451	

参照基準:	■■■ 通常(-) ■■ 中程度の異常(++)■■	■ やや異常(+) ■ 深刻な異常(+++)
ビタミン A:	0. 346-0. 401 (-) 0. 286-0. 311 (++)	0. 311-0. 346 (+) <0. 286 (+++)
ビタミン B1:	2. 124-4. 192 (-) 0. 643-1. 369 (++)	1. 369–2. 124 (+) <0. 643 (+++)
ビタミン B2:	1. 549–2. 213 (–) 1. 147–1. 229 (++)	1. 229-1. 549 (+) <1. 147 (+++)
ビタミン B3:	14. 477–21. 348 (–) 8. 742–12. 793 (++)	12. 793–14. 477 (+) <8. 742 (+++)
ビタミン B6:	0. 824–1. 942 (–) 0. 399–0. 547 (++)	0. 547-0. 824 (+) <0. 399 (+++)
ビタミン B12:	6. 428–21. 396 (–) 1. 614–3. 219 (++)	3. 219-6. 428 (+) <1. 614 (+++)
ビタミン C:	4. 543–5. 023 (–) 3. 153–3. 872 (++)	3. 872-4. 543 (+) <3. 153 (+++)

ビタミン D3: 5. 327-7. 109(-) 4. 201-5. 327(+)

2. 413–4. 201 (++) <2. 413 (+++)

ビタミン E: 4.826-6.013(-) 4.213-4.826(+)

3. 379–4. 213 (++) <3. 379 (+++)

ビタミン K: 0.717-1.486(-) 0.541-0.717(+)

0. 438-0. 541 (++) <0. 438 (+++)

項目の説明

ビタミン A:

ビタミンAは成長と生殖に関係が深く、上皮細胞にとっては不可欠の物質です。ビタミン A不足は皮膚角化症、肌荒れ、鳥目やドライアイの原因となります。

ビタミン B1:

ビタミンB1は炭水化物を代謝する役割をもっています。ビタミンB1の不足は組織内に集積された物質を代謝できなくなる為、中毒、水虫、足の痺れ、浮腫(水腫)、筋力、皮膚、心臓機能の低下につながります。

ビタミン B2:

ビタミンB2は脂質とタンパク質の代謝並びに肝臓の解毒作用に関連します。ビタミンB2の不足は成長の遅れや、皮膚の炎症、口内(口角)炎、や消化不良につながります。

ビタミン B3:

ビタミンB3はニコチン酸/ニコチンアミドとしても知られています。水に溶ける性質を持ち、人体内でトリプトファンから合成され、ホルモンの合成に必須の物質です。ビタミン B3は血行、血圧の低下、コレステロールの低下や中性脂肪の低下、胃腸疾患の低下、メニエル病などの症状を緩和します。ビタミンB3は脂漏性皮膚炎、湿疹などの皮膚細胞を機能活性化し、美白効果も見込めます。動物の肝臓、腎臓、赤身肉、赤身肉、小麦胚芽、全粒製品、ピーナッツ、イチジクなどに含まれています。

ビタミン B6:

ビタミンB6はアミノ酸の代謝に関連します。 神経過敏症や免疫物質の形成や粥状動脈硬化予防の役割をもっています。ビタミンB6の不足から貧血、凍傷など様々な皮膚障害が発症する場合があります。またトリプトファンが脾臓にダメージを与えるキサンツレン酸に変換する事を防ぎ、脾臓を守ります。

ビタミン B12:

ビタミンB12は骨髄内の造血機能を活発化させます。

ビタミン C (アスコルビン酸):

ビタミンCは透明な結晶で水やアルコールに溶ける性質を持ち、また壊れやすい事で知られています。主な機能は体の免疫機能の向上、毛細血管の保護、壊血病の予防と傷の回復を早める事などです。ビタミンCは鉄分の吸収促進並びに、食品に含まれる第二鉄を減らし、第一鉄に還元し、吸収を促進した上で肝臓と骨の中で鉄をフェリチンとして貯蔵します。ビタミンCをサプリメントとして加える事によって鉄の吸収効率を22%高める事が証明されています。

ビタミン D3:

生理学上の機能は腸内のカルシウム吸収を促進し、骨を作る為カルシウムとリンを結合させ、くる病を予防する。.

ビタミン E:

基本的な機能は細胞の内部構造を健康に保ち、脂質の酸化を抑制、フリーラジカルのダメージからT細胞を守ります。また、酸化防止、アンチエイジングなどの美容の効果もあります。

ビタミン K:

ビタミンKは血液凝固や骨の成長に重要な役割を果たすビタミンです。ビタミンKは肝臓内の4つの凝結タンパク質s (プロトロンビン, 第VII因子, 抗血友病因子 (?)、スチュアート因子)の合成に必須の物質です。ビタミンKは体内に少量しかありませんが、血液凝固機能を持ち、深刻な出血、月経、内出血や痔から我々を守ります。鼻血を良くだす方はビタミンKを自然食品から取る様にしてください。

(アミノ酸) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
リジン	0. 253 - 0. 659	0. 644	
トリプトファン	2. 374 - 3. 709	6. 237	0
フェニルアラニン	0. 731 - 1. 307	1. 216	
メチオニン	0. 432 - 0. 826	0. 642	
トレオニン(スレオニン)	0. 422 - 0. 817	0. 522	
イソロイシン	1. 831 - 3. 248	1. 852	
ロイシン	2. 073 - 4. 579	4. 242	
バリン	2. 012 - 4. 892	3. 76	
ヒスチジン	2. 903 - 4. 012	2. 986	
アルギニン	0. 710 - 1. 209	0. 994	

参照基準:	通常(-) 中程度の異常(++)	■■ やや異常(+) ■■ 深刻な異常(+++)
リジン:	0. 253-0. 659 (-) 0. 962-1. 213 (++)	0. 659-0. 962 (+) >1. 213 (+++)
トリプトファン:	2. 374–3. 709 (–) 4. 978–6. 289 (++)	3. 709–4. 978 (+) >6. 289 (+++)
フェニルアラニン:	0. 731–1. 307 (–) 1. 928–2. 491 (++)	1. 307–1. 928 (+) >2. 491 (+++)
メチオニン:	0. 432-0. 826 (-) 1. 245-1. 637 (++)	0. 826–1. 245 (+) >1. 637 (+++)
トレオニン(スレオニン):	0. 422-0. 817 (-) 1. 194-1. 685 (++)	0. 817–1. 194 (+) >1. 685 (+++)
イソロイシン:	1. 831–3. 248 (–) 4. 582–5. 657 (++)	3. 248–4. 582 (+) >5. 657 (+++)
ロイシン:	2. 073–4. 579 (–) 6. 982–9. 256 (++)	4. 579–6. 982 (+) >9. 256 (+++)

バリン: 2.012-4.892(-) 4.892-6.982(+)

6. 982-9. 677 (++)

ヒスチジン: 2.903-4.012(-) 4.012-5.113(+)

5. 113-6. 258 (+++) >6. 258 (+++)

アルギニン: 0.710-1.209(-) 1.209-1.812(+)

1. 812–2. 337 (+++)

項目の説明

リジン: 脳の成長を加速します。脂肪の代謝を行う肝臓や胆嚢を修復し、松果腺、乳腺、 黄体、卵巣を制御し、細胞の退化を予防します。

リジンは必須基本アミノ酸です。穀物には少量しか含まれておらず、処理時に破壊されてしまう為、第一制限アミノ酸と呼ばれています。リジン不足の症状は、疲労、脱力感、吐き気、嘔吐、めまい、食欲の減退、発育遅延や貧血などです。医療従事者の助言に従いサプリメントとして摂取することも可能です。リジンの推奨摂取量は子供だと10ミリグラム/ポンド、成人であれば3000-9000ミリグラムになります。リジンは栄養の吸収や利用に非常に重要な物質です。体内に適切な量のリジンがあれば食品からのタンパク質の吸収や利用がしやすくなり、栄養バランスが改善し、成長が促進されます。

リジンは人体の代謝バランスの調整も行います。リジンは細胞内の脂肪酸の合成するのに必要なカルニチンの形成成分を提供します。幼児に食品にあるリジンを少量摂取させる事でペプシンの分泌を刺激し、胃酸の分泌を改善し、食欲並びに成長を増進させる機能があります。リジンは体内のカルシウム吸収と集積を改善し、骨の成長を助けます。リジンが不足すると、胃液の分泌の低下から食欲不振(拒食症)や栄養失調性貧血、最終的には中枢神経混乱や形成異常につながります。

トリプトファン:胃液並びに膵液の生産を促進します。

トリプトファンは人間の脳内の重要な神経伝達物質に変換でき、---- 5 - ヒドロキシトリプタミン、ルアドレナリンやアドレナリンの様に振る舞い、睡眠時間を改善します。動物の脳内で5 - HTの量が低下すると異常行動、幻覚や不眠症が引き起こされます。加えて、5 - HTは非常に強い血管収縮作用があります。血小板や腸内粘膜細胞など様々な組織の中に存在し、出血を止める際には5 - HTを放出されます。トリプトファンは吐き気止め、抗痙攣、胃液分泌の調整器、胃粘膜の保護や抗昏睡(?) 剤としてしばしば使用される事がものとなります。

フェニルアラニン: 腎臓機能や膀胱の機能が損傷するのを防ぎます。

フェニルアラニンは人体の必須アミノ酸の一つです。食品経由で摂取され、フェニルア ラニンの一部はタンパク質の合成で使用され、残りは肝臓でフェニルアラニン水酸化酵素がチロシンに変換されます。その後、様々な生理活性物質に変換されます。

メチオニン: ヘモグロビン、血清や組織の成分であり、脾臓、膵臓やリンパ機能の向上を促進します。

メチオニンは硫黄を含む必須アミノ酸であり、様々な硫黄化合物の生体内代謝に深く関わっています。メチオニン不足は食欲の減退、成長を遅らせ、鉄の集積による腎臓や肝臓肥大をもたらし、肝臓死や繊維症をもたらします。

また、メチオニンは 毒物や薬物をメチル化する事による解毒機能もあるので、慢性/急性肝炎や肝硬変などの肝臓疾患の予防や治療に使われる事や、ヒ素、クロロホルム、四塩化炭素、ベンゼン、ピリジン、キノリンなどの有害物質の毒性を緩和します。

トレオニン(スレオニン):アミノ酸を変換しバランスを調整する機能があります。

トレオニンは 構造の中に人体の皮膚に水分を保持するヒドロキシ基(水酸基)を持ちます。オリゴ糖と結合する事で細胞膜を守る重要な役割を果たし、生体内のリン脂質の合成と脂肪酸の酸化を促進します。医療では人体の成長の促進と脂肪肝の抑制に役立つ為、しばしばアミノ酸注射の形で利用されます。トレオニンはアレルゲン性が低く、高効率な抗生物質、1級アミドストレプトゾシンの原材料としても使用されます。

イソロイシン:代謝、腺、脾臓、脳下垂体の制御と代謝に関わりがあります。

バリン、ロイシン、イソロイシンは分岐鎖アミノ酸の一種であり、必須アミノ酸でもあります。 イソロイシンは神経性の障害、食欲の減退、貧血などの治療や、筋肉のタンパク質代謝に重要な役割を果たします。

ロイシン:イソロイシンの調整を行う

ロイシンは子供の急性高血糖症の診断や治療に使用されます。また、めまいや栄養補助 にも使用する場合があります。

バリン:黄体、乳管、卵巣機能に働きかけます。

ラットを使った動物実験ではバリンが不足した場合、中枢神経系の機能不全が見られ、また四肢の震えが発生しました。解剖したところ、脳組織の赤核に変性が見られました。進行した肝硬変患者は肝組織の損傷がある為、しばしば高インシュリン血症を発病する事があります。これは、血中の分岐鎖アミノ酸の低下を招き、分岐鎖アミノ酸や芳香族アミノ酸は通常範囲の3.0-3.5から1.0-1.5より下まで低下します。バリンなどの分岐鎖アミノ酸注射は肝不全の治療や、また、傷からの回復を早める為に使用されます。

ヒスチジン:代謝の抑制機能を持ちます。

ヒスチジンのイミダゾールはFe2+(鉄イオン)やその他のイオンと配位化合物を作成し 鉄の吸収を促進する機能があり、貧血予防に使用される場合があります。ヒスチジンは 胃液酸度を下げ、胃腸内の手術が原因の痛みを和らげ、胸やけや妊娠期の嘔吐を緩和 し、胃腸内の腫瘍からくる自律神経の失調を抑制し喘息などのアレルギー性疾患にも効 果があります。加えて、血管拡張と血圧低下能力もあり、ヒスチジンは扁桃炎や心不全 の治療に使われる場合があります。関節リウマチを患っている患者は体内ヒスチジン量 が非常に少ないのですが、ヒスチジンを使用した治療後、握力や歩行、赤血球沈降速度 の指標で改善が見られました。成人はヒスタミンを合成することができますが、10歳以 下の子供はできない為、10歳以下の子供にはヒスチジンを食物から摂取する必要があり ます。

アルギニン: 傷の治りを早めたり、精液のタンパク質の材料となります

アルギニンはオルチニン回路の中間物質であり、生理学上、非常に重要な機能をもっています。アルギニンを経口で摂取すると、肝臓のアルギナーゼの活動を活発化させ、アンモンニアを尿素として血中に排出します。ですので、アルギニンは高アンモニア血症や肝機能障害などに非常に効果的です。

(コエンザイム) 分析レポート

名前:事例(女性) 性別: 女性 年齢: 31

体型: 165cm, 62kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
ニコチンアミド	2. 074 - 3. 309	2. 867	0
ビオチン	1. 833 - 2. 979	2. 47	0
パントテン酸	1. 116 - 2. 101	2. 078	0
葉酸	1. 449 - 2. 246	2. 143	
コエンザイム Q10	0. 831 - 1. 588	0. 869	
グルタチオン	0. 726 - 1. 281	1. 235	0

参照基準:	通常(-) 中程度の異常(++)■	深刻な異常(+++)
ニコチンアミド:	2. 074-3. 309 (-)	1. 348-2. 074 (+)
	0. 626-1. 348 (++)	<0. 626 (+++)

ビオチン: 1. 833–2. 979 (–) 1. 097–1. 833 (+)

0. 373-1. 097 (++) <0. 373 (+++)

パントテン酸: 0.809-1.116(+) 1. 116-2. 101 (-) 0. 432-0. 809 (++) <0. 432 (+++)

> 1. 449-2. 246 (-) 1. 325–1. 449 (+)

1. 243-1. 325 (++) <1. 243 (+++)

コエンザイム Q10: 0. 831-1. 588 (-) 0. 627-0. 831 (+) 0. 418-0. 627 (++) <0.418 (+++)

0. 476-0. 726 (+) グルタチオン: 0. 726-1. 281 (-) <0. 171 (+++)

0. 171-0. 476 (++)

項目の説明

ニコチンアミド:

葉酸:

ニコチンアミドは生体内の必須コエンザイムであり、生物学上、水素の移動に重要な役 割を果たします。様々な酵素、核酸、タンパク質、多糖類の合成や代謝を促進し、体内 の材料のコントロールや輸送、代謝を改善します。

ビオチン:

ビタミンCの合成に必要な物質であり、脂肪とタンパク質の通常代謝に必須な物質です。

体の成長と保持機能に必要な水溶性ビタミンであり、脂肪とタンパク質の代謝、また通常の成長に必要な栄養素となります。

パントテン酸:

エネルギー生産を促し、脂質代謝をコントロールします。脳や神経に必要な栄養素であり、体の抗ストレスホルモン(ステロイド)分泌をサポートし、皮膚や髪を健康に保ちます。

葉酸:

葉酸は体がアミノ酸や糖分を使用するのに必要な物質です。また体内の細胞の成長や生殖に必要であり、葉酸が欠乏すると人体に巨細胞性の貧血や白血球減少症がおこり、脱力感、 神経過敏、食欲の減退、精神病的症状などにつながります。

コエンザイム Q10:

コエンザイム Q10は脂溶性の抗酸化物質で、人間にとって欠かすことができません。体内の細胞を活発化し、栄養からエネルギー(を生産)し、免疫を改善、酸化防止機能を向上、アンチエイジングや人体の生命力を向上させるなど様々な機能があります。体内のコエンザイム Q10量はわずか500から1500ミリグラムですが、加齢と共に減少していきます。人体のコエンザイム Q10は20歳でピークとなり、その後急激に減少します。

グルタチオン:

グルタチオンは三つのアミノ酸ペプチドで構成されており、体内のほぼどの細胞の中にも存在します。通常、グルタチオンは体の免疫系機能を保全する役割を持ちます。そのほかのグルタチオンの生理学上の役割は人体の重要な抗酸化物質として働くことです。 体内のフリーラジカルを排出し、公害から人体を浄化し、人々を健康に保ちます。

(脂肪酸) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 165cm, 62kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
リノール酸	0. 642 - 0. 985	0. 676	
α-リノレン酸	0.814 - 1.202	0. 676	
γ-リノレン酸	0. 921 - 1. 334	0. 68	
アラキドン酸	0. 661 - 0. 808	0. 68	

参照基準:	通常 (-) 中程度の異常 (++)	やや異常 (+) 深刻な異常 (+++)
リノール酸:	0. 642-0. 985 (-)	0. 356-0. 642 (+)

0. 195-0. 356 (++)

α-リノレン酸: 0.814-1.202(-) 0.502-0.814(+)

0. 347-0. 502 (++) <0. 347 (+++)

γ-リノレン酸: 0. 921-1. 334 (-) 0. 623-0. 921 (+)

0. 310-0. 623 (++) <0. 310 (+++)

アラキドン酸: 0.661-0.808(-) 0.478-0.661(+)

0. 283-0. 478 (++) <0. 283 (+++)

項目の説明

リノール酸:

そうで代謝、内分泌調節および遅い老化を促進し、血圧を下げ、血液循環を促進し、軟化心血管:リノール酸は、主に必須脂肪酸、人体への影響です。血管壁、世界で「血管スカベンジャー」でヒト血清コレステロールの付着を防止するのに役立つことができ、アテローム性動脈硬化症および心血管疾患の予防及び治療の効果を有します

α-リノレン酸:

体が欠けていると、そのは、減少した免疫力、物忘れ、疲労、視力低下、アテローム性動脈硬化症などの症状が発生し、その結果、体内の脂質代謝からつながります。

γ-リノレン酸:

γ-リノレン酸は、ヒト組織および生体膜の構成物質であるプロスタグランジン合成の前駆体です。大人の毎日の要件によって生成されたリノール酸の代謝変換は、36mg/kgの程度です。このような摂取不足など、身体機能障害を引き起こすなどというように、糖尿病、高コレステロール、およびなどの特定の疾患を引き起こす可能性があります。

アラキドン酸:

|アラキドン酸は、知性を改善し、向上視力が重要な役割を有し、人間の脳と視神経の開|

発において重要な物質です。同時に結合血液、肝臓、筋肉中の脂質及びリン脂質のような他の器官系の構造は、血液粘度、血液細胞機能の調節および生理活性一連の低減、エステル化コレステロールを有する弾力性を増加させる、重要な役割を果たしています。

(内分泌系) 分析レポート

名前:事例(女性) 性別:女性 年齡:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
甲状腺分泌指標	2. 954 - 5. 543	2. 642	
副甲状腺ホルモン分泌指標	2. 845 - 4. 017	4. 005	
副腎指標	2. 412 - 2. 974	2. 062	
脳下垂体分泌指標	2. 163 - 7. 34	1.5	
松果体分泌指標	3. 210 - 6. 854	6. 419	
胸腺分泌指標	2. 967 - 3. 528	2. 499	
性分泌指標	2. 204 - 2. 819	2. 583	

参照基準:	■■■ 通常(-) ■■■ やや異常(+)
参照基 年·	── 中程度の異常(++) ── 深刻な異常(+++)

副甲状腺ホルモン分泌指標: 2.845-4.017(-) 1.932-2.845(+)

1. 134–1. 932 (++) <1. 134 (+++)

副腎指標: 2.412-2.974(-) 1.976-2.412(+)

1. 433–1. 976 (++) <1. 433 (+++)

脳下垂体分泌指標: 2.163-7.34(-) 1.309-2.163(+)

0. 641–1. 309 (++) <0. 641 (+++)

松果体分泌指標: 3. 210-6. 854(-) 2. 187-3. 210(+)

0. 966-2. 187 (++) <0. 966 (+++)

胸腺分泌指標: 2.967-3.528(-) 2.318-2.967(+)

1. 647–2. 318 (++) <1. 647 (+++)

性分泌指標: 2. 204-2. 819(-) 1. 717-2. 204(+)

1. 028–1. 717 (++) <1. 028 (+++)

項目の説明

甲状腺分泌指標:

甲状腺は内分泌系に分類され、重要な器官の一つです。甲状腺と呼吸器などの体組織に

は明らかな違いがあります。神経系と密接に関連し、お互いに影響をもたらす事から2つは生物学上の情報系として知られています。神経系と甲状腺が協力して体内の環境を安定させているのです。内分泌系はたくさんの腺の種類がありますが、基本的には神経が制御、内分泌細胞が分泌を担当し、血行を通じて化学物資を効率的に器官に向けて分泌します。この化学物資をホルモンと呼びます。甲状腺は人体における最大の内分泌腺で、神経から刺激を受けて甲状腺ホルモンを分泌し、そのホルモンが器官に届いた時点で様々な生理学上の効果を発揮されます。

副甲状腺ホルモン分泌指標:

PTHの主な機能はカルシウムやリンの代謝に関連し、骨中のカルシウムを分離させ血中カルシウム濃度を上昇させます。また、腸並びに尿細管において、カルシウムの吸収率を上げる働きもしますので、カルシウムの安定に寄与します。もし、副甲状腺分泌が低い場合、カルシウム濃度が低下しテタニー(強直)につながります。また、甲状腺機能亢進症があった場合、カルシウムが過剰になる為、骨は砕けやすくなります。副甲状腺の機能不全になった場合、カルシウムとリンのバランスは崩れる可能性があります。

副腎指標:

副腎髄質はアドレナリンおよびノルアドレナリンの分泌をします。ストレスホルモンの増大に伴い、血圧、心拍数、血中ぶどう糖の上昇をもたらし、体内の貯蔵物質の開放をし外部環境からの攻撃に対して準備を行います。副腎は人体にとって重要な腺です。脳下垂体の神経中枢にて制御されています。例として腎臓レニンがアルドステロン分泌を制御し、脳下垂体のACTHがコルチゾール分泌とアンドロゲンを制御し、交感神経はアドレナリンとノルアドレナリンを制御します。

脳下垂体分泌指標:

脳下垂体は体内で最も重要な内分泌器官です。前葉と後葉に分かれており、成長ホルモン、甲状腺刺激ホルモン、副腎皮質刺激ホルモン、ゴナドトロピン、オキシトチン、プロラクチン、メラニン細胞刺激ホルモンなどを分泌し、また視床下部で分泌する抗利尿ホルモンを貯蔵します。これらのホルモンは、代謝、成長、生殖などに重要な役割を果たします。

松果体分泌指標:

松果体細胞は上頸交感神経節から節後繊維を介して情報を受け取り、交感神経からの刺激 でメラトニンを合成・分泌します。松果体は光と非常に関係が深く、光を継続して浴びていると縮小し、松果体細胞からの分泌は抑制されます。暗くなると松果体は分泌が増える。メラトニンの分泌は光によって制御される為、サーカディアン・リズムでの分泌となる。ヒト血漿内では、正午に分泌が最低となり、真夜中に最高となる。加えて、周期性の分泌は人間並びに動物の発情周期や女性の月経周期にも関連する。松果腺はメラトニンの分泌サイクルを通じて中枢神経系にシグナルを送り、体に寝る時間と起きる時間を知らせている。

胸腺分泌指標:

胸腺は内分泌機能を持ったリンパ器官です。胸腺は新生児や幼児の段階で最大となり、性的成熟期後、徐々に縮小していきます。胸腺は灰赤色の柔らかい組織で左葉と右葉に分かれ前縦隔に位置しており、成人の場合、おおよそ25から40グラムとなっています。胸腺は胎児の際に造血器官として機能しますが、成人期にはリンパ球、プラズマ細胞、骨髄細胞などを分泌します。胸腺の網状上皮細胞はサイモシン(T細胞の成熟を促進する)を分泌し また運動神経末端から合成・放出されるアセチルコリンを抑制する役割を持ちます。胸腺腫がある場合、サイモシンの分泌量が増加し、重症筋無力症から神経筋障害へとつながる場合があります。

性分泌指標:

主に男性の生殖腺や精巣、女性の卵巣に関連します。

精巣は男性ホルモンのテストステロンを分泌し、主な機能は生殖腺ならびにその下部組織の成長を促進し、性徴を出現させ、タンパク質の合成を促進することにあります。 卵巣は卵胞刺激ホルモン、プロゲストロン(黄体ホルモン)、レラキシン、男性ホルモンを分泌します。

機能は下記のとおり

- (1) 子宮内膜での増殖、子宮の厚みを増す、子宮肥大化、女性的性徴の出現など
- (2) 子宮上皮細胞(表皮)と子宮腺の増殖の促進、体内の水分、ナトリウム、カルシウ

ムの調整、血糖値の低下、体温の上昇。

- (3) 出産時の子宮頸部並びに恥骨結合靱帯の弛緩
- (4) 女性でも男性的性徴の出現など

(免疫系) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
リンパ節指標	133. 437 - 140. 47	135. 393	0
扁桃免疫指標	0. 124 - 0. 453	0. 358	- O
骨髄指標	0. 146 - 3. 218	1. 311	
脾臓指標	34. 367 - 35. 642	34. 602	
胸腺指標	58. 425 - 61. 213	55. 102	O O
免疫グロブリン指標	3. 712 - 6. 981	3. 53	
呼吸器免疫指標	3. 241 - 9. 814	5. 629	
胃腸内免疫指標	0. 638 - 1. 712	0. 578	
粘膜免疫指標	4. 111 - 18. 741	7. 644	- O

参照基準:	通常(-) 中程度の異常(++)	■ やや異常(+) ■ 深刻な異常(+++)
リンパ節指標:	133. 437–140. 47 (–) 146. 926–153. 164 (++)	140. 47–146. 926 (+) >153. 164 (+++)
扁桃免疫指標:	0. 124–0. 453 (–) 0. 073–0. 097 (++)	0. 097-0. 124 (+) <0. 073 (+++)
骨髄指標:	0. 146–3. 218 (–) 0. 052–0. 089 (++)	0. 089-0. 146 (+) <0. 052 (+++)
脾臓指標:	34. 367–35. 642 (–) 29. 947–33. 109 (++)	33. 109–34. 367 (+) <29. 947 (+++)
胸腺指標:	58. 425–61. 213 (–) 52. 518–55. 627 (++)	55. 627–58. 425 (+) <52. 518 (+++)
免疫グロブリン指標:	3. 712–6. 981 (–) 1. 571–2. 476 (++)	2. 476-3. 712 (+) <1. 571 (+++)
呼吸器免疫指標︰	3. 241-9. 814 (-) 1. 029-2. 174 (++)	2. 174-3. 241 (+) <1. 029 (+++)
胃腸内免疫指標︰	0. 638-1. 712 (-) 0. 218-0. 434 (++)	0. 434-0. 638 (+) <0. 218 (+++)

粘膜免疫指標: 4. 111-18. 741(-) 2. 647-4. 111(+) 1. 138-2. 647(++) <1. 138(+++)

項目の説明

リンパ節指標:

リンパ節は哺乳類の独自器官です。普通のリンパ節はとても小さく(直径0.5cm未満)、滑らかで、柔らかく、回りの組織と接着していません。細菌が傷口から侵入した場合、リンパ球は効率よくリンホカインと抗体で細菌を殺そうとします。結果、リンパ節でリンパ組織の過形成が起こり、反応性リンパ細網細胞造成となります。ウィルスや特定の化学物資、代謝から発生する毒物や組織の編成物、異物は反応性リンパ肥大症を招くことがあります。リンパ節の肥大化は体からのシグナルなのです。

扁桃免疫指標:

扁桃は咽頭部における最大のリンパ組織です。小児期に免疫器官として活発に働き、 T 細胞、B 細胞、貪食細胞(ファゴサイト)の様々な細胞を成長させます。体液性の免疫、免疫グロブリン並びに細胞免疫という様々な役割を持つ。免疫グロブリンA (IgA) は細菌が呼吸器の粘膜に接着することを抑制し、また細菌やウィルスの増殖を抑え、中立化させる役割を持ちます。

骨髄指標:

人間の造血機能は骨の中にあります。成人の骨髄は2種類あり、赤色骨髄と黄色髄と呼ばれています。赤色骨髄は赤血球、血小板や様々な白血球を生産しています。血小板は止血機能、白血球は病原体、細菌、ウィルスなどを殺す機能をもっています。; リンパ球は抗体を生産する場合があります。骨髄は造血器官と言うだけではなく、重要な免疫器官でもあるのです。

脾臓指標:

脾臓は体内最大のリンパ器官で、腹部の左上側に位置しています。脾臓の主な機能は、血液のろ過と保管になります。脾臓はパリパリとした感触で血液を豊富に含み、また外部からの衝撃で壊れやすい器官になっています、脾臓の損傷は大出血を招き、死に至る場合があります。

胸腺指標:

胸腺は重要なリンパ器官でもあり、内分泌腺器官としてリンパ球を生産し、免疫を助けます。免疫機能は加齢と共に萎縮します。胸の縦隔の前に位置し、胎児期の後期並びに出産直後は約10 から15グラム、思春期には30~40グラムまで成長し、その後、加齢と共に15グラム程度にまで減少します。

免疫グロブリン指標:

免疫グロブリンは 動物内にある抗体を含むタンパク質です。主に血漿の中に存在しますが、他の体液、組織、分泌液の中にも存在します。ヒト血漿内の免疫グロブリンは γ (ガンマ)・グロブリンとなります。免疫グロブリンは5種類($\log G$, $\log M$, $\log D$, $\log E$)に分かれています。

呼吸器免疫指標:

人間の呼吸器系は外の世界への窓口につながっています。病原体、微生物、有害物質は空気を通して呼吸器に炎症を引き起こします。呼吸器系には各種リンパ組織がそれぞれ 上咽頭から気管支梢、肺胞などに位置しており、リンパ節は気管と気管支の周りにあり ます。

胃腸内免疫指標:

免疫学の進歩と最新の研究で、人々はより免疫と消化管疾患の関連に注目する様になりました。消化管の自然免疫とは口から直腸粘膜までの消化管、各種分解酵素、胆汁、肝臓壁、胃腸内の蠕動や腸内フローラの間の免疫機能を指します。

粘膜免疫指標:

粘膜免疫系は通常の免疫系と若干違いますが、密接に関連しています。粘膜免疫系は2つ大きな機能をもっています:免疫誘導と部分免疫反応です。リンパ球は体内免疫系と粘膜免疫系のそれぞれに移動し、細胞の分化や成熟を行います。

(甲状腺) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 165cm, 62kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
遊離サイロキシン(FT4)	0. 103 - 0. 316	0. 291	0
サイログロブリン	0. 114 - 0. 202	0. 417	
抗サイログロブリン抗体	0. 421 - 0. 734	0. 503	
トリヨードサイロニン (T3)	0. 161 - 0. 308	0. 3	0

参照基準:	通常(-)	■■■ やや異常(+)
参照 基 年·	中程度の異常(+	+) 深刻な異常(+++)

遊離サイロキシン(FT4): 0. 103-0. 316 (-) 0. 316-0. 645 (+)

0. 645-0. 873 (++) >0. 873 (+++)

サイログロブリン: 0.114-0.202(-) 0.202-0.447(+)

0. 447–0. 627 (+++) >0. 627 (+++)

抗サイログロブリン抗体: 0.421-0.734(-) 0.323-0.421(+)

0. 210-0. 323 (++) <0. 210 (+++)

トリヨードサイロニン (T3): 0.161-0.308(-) 0.308-0.543(+)

0. 543-0. 757 (++) >0. 757 (+++)

項目の説明

遊離サイロキシン(FT4):

遊離サイロキシン (FT4) は甲状腺機能の指標で、甲状腺ホルモン結合蛋白と結合している血中のサイロキシンの値を調べることで、甲状腺機能の生理学的/病理学的状態を反映します。

サイログロブリン:

サイログロブリンは甲状腺の濾胞上皮細胞で合成される糖蛋白分子で甲状腺濾胞コロイドの主要な部品となっております。グロブリンは甲状腺ホルモンの形で合成され、濾胞腔内に貯蔵されます。通常の場合、痕跡量は血行内のTGで示されます。

抗サイログロブリン抗体:

抗サイログロブリン抗体は自己抗体から引き起こされた甲状腺炎の診断をする際、橋本病(慢性甲状腺炎指標)などの指標になります。抗サイログロブリン抗体が抗ミクロソーム 抗体が陽性であれば、橋本病(慢性甲状腺炎)の可能性が高く、次に原発性甲状腺機能低下症が疑われます。ほかの甲状腺疾患も血液検査から診断できますが、値は低くなります。

トリヨードサイロニン (T3):

T3 は甲状腺の濾胞で合成され、ホルモンの分泌を行う。

(人体にとっての毒物) 分析レポート

名前:事例(女性) 性別:女性 年齡:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
刺激性飲料	0. 209 - 0. 751	0. 45	
電磁放射	0. 046 - 0. 167	0. 28	- U
たばこ/ ニコチン	0. 124 - 0. 453	0. 407	
残留農薬	0. 013 - 0. 313	0. 266	

参照基準: 通常(-) ゆや異常(+) → マ刻な異常(++) → マ刻な異常(++)

刺激性飲料: 0.209-0.751(-) 0.751-0.844(+)

0. 844-0. 987 (+++) >0. 987 (+++)

電磁放射: 0.046-0.167(-) 0.167-0.457(+)

0. 457-0. 989 (+++) >0. 989 (+++)

たばこ/ ニコチン: 0. 124-0. 453(-) 0. 453-0. 525(+)

0. 525-0. 749 (++) >0. 749 (+++)

残留農薬: 0.013-0.313(-) 0.313-0.406(+)

0. 406-0. 626 (++) >0. 626 (+++)

項目の説明

刺激性飲料:

刺激性飲料は、電解質が若干あるか全くありません。これらの飲料を運動後に飲むと身体に水分を加える働きをします。また、細胞内の電解質のさらなる喪失を加速するために大量の水分を摂取することで、体内の細胞外液浸透圧が減少するという結果になる可能性が高まります。運動後に冷水を摂取する人もいます。冷水を摂取後は清涼感を感じますが、運動後、即座に摂取すると胃腸の平滑筋が刺激され、胃腸けいれんや腹痛が引き起こされます。水分の適温は、15℃から40℃ですので、回復力が加速します。これらの刺激性飲料の主要成分は、砂糖(またはサッカリン)・色素・炭酸水と二酸化炭素で、これらの刺激性飲料には一定量のカロリーを除いてほとんど栄養がありません。人体にこれらの刺激性飲料には一定量のカロリーを除いてほとんど栄養がありません。人体に過剰な合成香味料や色素の摂取は身体に有害となりますので、あまり摂取しないほうが望ましいです。着色果汁(果汁)は、多くのビタミンや砂糖を含む様々な果汁により作られます。果汁を摂取すると体内にビタミンや無機塩系を補充することができ、又、有機酸は体液の酸塩基平衡を調整し消化液の分泌を刺激、食欲促進や脾臓を活性化します。

電磁放射:

1. 電磁放射とは、何でしょうか?それは電場や磁場の相互作用変化によって電磁波を発生させ、空中発射や電磁波の曝露を行う現象です。安全限界を超えた電磁放射は、電磁

気汚染を引き起こします。現在、電磁気汚染は最も深刻な汚染となっており、汚水・廃 ガスや騒音よりも上位にランクインされています。

- II. 電磁放射と身体の健康: 商用周波数の電磁場 (50-60HZ)が、身体の健康に影響するかどうかというテーマに関して欧米諸国は、数多くの研究や統計解析を行い、驚くべき結果を得ました。それは、ヒト腫瘍の発生の見込みが低周波電磁放射に密接に関係しているというものです。
- III. 人体への電磁放射の機序: 伝導体である人体は、電磁エネルギーを吸収することができます。電磁場の作用下で人体は、熱影響を引き起こします。電磁場の強度が強いほど、熱影響がより明確になります。さらに、熱影響は人体の生体電気情報の伝達に干渉します。
- IV. 人体への電磁放射の損害は、主に以下のように示されます。電磁放射は、ヒトの健康を多大な影響を及ぼし、神経性・生殖・循環や免疫機能及び視界などに変化させることが可能です。主な症状には、頭痛・眩暈・記憶喪失・凝縮不全・鬱病・過敏症・女性の月経異常・乳癌・肌老化・呼吸困難や背痛などが含まれます。よく電磁放射と接触する人の白血病発生の割合は、健康な人と比較すると2.93倍も高くなります。また、脳腫瘍が発生する割合は、健康な人と比較すると3.26倍も高くなります。

たばこ/ ニコチン:

ニコチンの含有量が1.2から1.8ミリグラムに達するとマウスが中毒死する場合があります。たばこの主な有害構成成分はタールで、ニコチンアミドはタール内の構成成分の1つです。ニコチンアミドは通常ニコチンを意味し、ニコチンの有害さは、よく知られています。言い換えると、ニコチンを含むたばこやその代用品は、人体に損害を与えます。ニコチンが口内に吸入される限り、間違いなく悪影響を与えます。喫煙の危険性

1. 発癌性

- 11. 心臓や脳血管への影響: 喫煙が数多くの循環器と脳血管の疾患の主要な要因であることは多くの研究が示唆しています。喫煙者の冠状動脈性疾患・高血圧・脳血管疾患や末梢血管疾患に対する発生率は、全て著しく増加しています。統計によると冠状動脈性疾患や高血圧の患者さんの75%に喫煙歴があることが示されています。喫煙者の冠状動脈性疾患の発生率は、非喫煙者と比較すると3.5倍も高く、また、喫煙者の冠状動脈性疾患の死亡率は、非喫煙者と比較すると6倍も高くなり、心筋梗塞の発生率は、非喫煙者と比較すると2から6倍も高くなります。検死により、喫煙者の冠状動脈アテローム性動脈硬化症の発生率は、非喫煙者と比較すると幅広いことも明らかとなっています。
- III. 気道への影響: 喫煙は、慢性気管支炎・気腫や慢性気道閉塞の主な誘因物の1つです。実験研究によると、長期間の喫煙は気管支の粘膜繊毛を損傷したり短くしたりし、繊毛のクリアランスに影響を及ぼす可能性があることが明らかになりました。IV. 消化管への影響: 喫煙者は一般的に、胃酸分泌の増加が非喫煙者と比較すると91.5%増加し、膵臓に炭酸水素ナトリウムの分泌を抑制させ十二指腸の酸負荷を増大させる結果を招く可能性がありますので、潰瘍を誘発する可能性があります。たばこに含まれるニコチンは胆汁が容易に還流できるように、幽門括約筋の張力を減少させることが可能です。胃の防御因子や十二指腸の粘膜を弱め、慢性炎症や潰瘍の発生を誘発し、原潰瘍の治療を遅延する可能性があります。さらに、喫煙は食道括約筋の張力を減少させる可能性がありますので、逆流性食道炎の発症率を高めます。

残留農薬:

農薬の原体・有毒代謝物・有機体に残った分解生成物や不純物・農薬使用後の副農産物や環境は、残留農薬と呼ばれています。農薬の原体の残差のみを残留農薬とみなし、有毒代謝物やその分解生成物を軽視する人がよくいますが、実際には原体のみが有毒なのではなく、その代謝産物や不純物の慢性毒性も原体の有毒性に相当、またはそれ以上に深刻なものなのです。農薬はホルモンの変更が可能で、女性の分泌障害・男性の乏精子症や精子生存率の低下という結果をもたらすことがあります。農薬が身体に入ると身体の負荷が増加し疾患を引き起こす為、腎臓や肝臓により農薬の一部が変換されるか排出されます。残留した一部の農薬は血液のヘモグロビンと結合を起こし、酸素供給能力を減少させたり、脂溶性の農薬の一部は、体内脂肪に沈着させます。

(重金属) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
鉛	0. 052 - 0. 643	0. 627	0
水銀	0. 013 - 0. 336	0. 144	
カドミウム	0. 527 - 1. 523	1. 608	
クロム	0. 176 - 1. 183	0. 505	
ヒ素	0. 153 - 0. 621	1. 29	- U
アンチモン	0. 162 - 0. 412	0. 232	
タリウム	0. 182 - 0. 542	0. 514	
アルミニウム	0. 192 - 0. 412	0. 514	

参照基準:	■■■ 通常 (-) ■■■ 中程度の異常 (++)■■	■ やや異常(+) ■ 深刻な異常(+++)
鉛:	0. 052-0. 643 (-) 1. 005-1. 582 (++)	0. 643–1. 005 (+) >1. 582 (+++)
水銀:	0. 013-0. 336 (-) 0. 721-1. 043 (++)	0. 336-0. 721 (+) >1. 043 (+++)
カドミウム:	0. 527-1. 523 (-) 1. 932-2. 146 (++)	1. 523–1. 932 (+) >2. 146 (+++)
クロム:	0. 176–1. 183 (–) 1. 843–2. 663 (++)	1. 183–1. 843 (+) >2. 663 (+++)
ヒ素:	0. 153-0. 621 (-) 1. 243-1. 945 (++)	0. 621–1. 243 (+) >1. 945 (+++)
アンチモン:	0. 162-0. 412 (-) 0. 885-1. 374 (++)	0. 412-0. 885 (+) >1. 374 (+++)
タリウム:	0. 182-0. 542 (-) 1. 133-1. 721 (++)	0. 542-1. 133 (+) >1. 721 (+++)
アルミニウム:	0. 192–0. 412 (–) 0. 726–1. 476 (++)	0. 412-0. 726 (+) >1. 476 (+++)

項目の説明

鉛:

血中の鉛は10 マイクログラムから14 マイクログラム / リットルを超えない方が良いと考えられています。長期の鉛や鉛化合物を含む埃の吸引は様々な段階の[鉛中毒]症を引き起こします(鉛の血中濃度が40 マイクログラム / リットル異常)。過剰に吸引することにより、人体の神経系、心臓、呼吸器系などに障害を起こし、体内で様々な酵素や生理活動を妨害し、器官を危険にさらします。未成年者の場合、鉛中毒になる可能性は成人に比べかなり高くなります。

水銀:

水銀を摂取すると直接肝臓、脳、視神経に重大な損傷を引き起こし、主に人体の神経系、消化器系、腎臓になどにも障害を起こします。更に呼吸器系、皮膚、血や目にも影響を与えます。

カドミウム:

カドミウムは呼吸器を刺激し、長期の曝されると嗅覚の消失、歯茎の変色(黄色の斑状や環状)などの症状を起こします。カドミウム化合物は腸で簡単に吸収されませんが、呼吸を通じて体内に入り、肝臓または腎臓に吸収され、腎臓に大きなダメージを与えます。特に骨の代謝に混乱を及ぼし、骨粗しょう症、萎縮症、変形などの症状を起こします。

クロム:

自然界ではクロムは主に三価クロム並びに六価クロムの形で存在する。六価クロムの吸収は消化器、呼吸器、皮膚、粘膜から行われ、慢性中毒を引き起こす。吸収後は肝臓や腎臓、内分泌腺の中に集積される。呼吸器系では特に肺に集積しやすい。六価クロムは強力な酸化作用を持ち、慢性中毒は呼吸器系から侵入し、まず上気道に鼻炎、咽頭炎、喉頭炎、気管支炎などを発症させる。

ヒ素:

ヒ素が人体に摂取された場合、尿や、消化液、唾液、母乳などで排せつされる。吸収された際は肝臓、腎臓脾臓、筋肉、髪、爪や他の部位に集積され、骨粗鬆症を引き起こす。ヒ素が神経系に作用する際、造血器官を刺激し、少量であれば赤血球を活発化作用があるが、長期のヒ素への曝露はヒ素中毒を起こし、毛細血管や細胞に毒性をもたらし、がんにつながる場合がある。

アンチモン:

自然の中のアンチモンは銀白色の金属で、目、鼻、喉、皮膚を刺激し、長期の曝露は心臓機能と肝機能に障害をもたらす場合がある。高レベルのアンチモンを吸引した場合、アンチモン中毒となり、嘔吐、頭痛、呼吸困難並びに深刻な場合、死に至る場合があります。

タリウム:

タリウムは強力な神経毒で肝臓や腎臓に損傷を負わせる。吸引や経口で摂取した場合、 急性中毒になる場合がある。また皮膚から吸収される場合もある。

アルミニウム:

アルミニウムは人間の思考、意識とメモリ機能、重症の場合は認知症がよい干渉、神経系の疾患を引き起こす、人間の体内に蓄積していきます。アルミニウムの過剰摂取だけでなく、骨損失のカルシウムの沈着をもたらし、骨形成、骨軟化症の発生を抑制する。

(基礎物理特性) 分析レポート

名前:事例(女性) 性別:女性 年齡:31

体型: 165cm, 62kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
反応能力	59. 786 - 65. 424	62. 054	
知力	58. 715 - 63. 213	63. 02	
水分不足	33. 967 - 37. 642	33. 874	
低酸素症	133. 642 - 141. 476	133. 757	
PH	3. 156 - 3. 694	3. 66	

反応能力: 59. 786-65. 424(-) 57. 331-59. 786(+)

54. 347–57. 331 (++) <54. 347 (+++)

知力: 58.715-63.213(-) 56.729-58.715(+)

52. 743–56. 729 (++) <52. 743 (+++)

水分不足: 33.967-37.642(-) 31.265-33.967(+)

28. 431–31. 265 (++) <28. 431 (+++)

低酸素症: 133.642-141.476(-) 126.619-133.642(+)

123. 321–126. 619 (++) <123. 321 (+++)

PH: 3.156 - 3.694 (ノーマル)

>3.694(アルカリ) <3.156(酸)

項目の説明

反応能力:

副腎機能、圧迫能力と意志力を示し、59.786から65.424の範囲が正常。異常であると副腎分泌が低すぎる、感情が意気消沈していると思われる、反応が遅すぎることが示されます。

知力:

脳機能と活力を示し、58.715から63.213の範囲が正常値です。異常であると弱い脳機能・鬱病・不眠症・思考や記憶の衰退などが示されます。

水分不足:

体内の水分を示し、33.967から37.642の範囲が正常値です。異常であると体内の水分が不足し、渇きや疲労の感覚が現れますので水分の補給が必要です。水分不足が長時間続くと通常は、肌が乾燥したり老化しやすくなったりします。

低酸素症:

身体の細胞の酸素含有量示し、33.642から141.476の範囲が正常値です。異常であると細胞の酸素含有量が低く、呼吸器系に異常がある可能性があり、貧血の傾向や運動不足が示されます。細胞変性・記憶喪失や消化不良という結果を招く場合もあります。

PH:

血液のPH示し、33.642から141.476の範囲が正常値です。3.694よりも高いpHはアルカリ性寄りになり、身体が痛みやすくなります。3.156よりも低いpHは、酸性寄りになり、身体は慢性疾患を招きやすくなり、以下の症状が発症します。1.疲労・喘息寝起きが悪い状態に陥りやすくなります。2. 風邪・糖尿病・高血圧や痛風に罹患しやすくなります。3. 肥満になりやすくなります。4. 肌にしわが増え、つやが不足します。体内には、pH値を調整するための機能が3種類あります。1. 血液タンパク質。2. 炭酸塩の集積を予防するために、肺が二酸化炭素を排出する機能。3. pH値を調整するために、腎臓が酸塩基を排出し、炭酸水素中和Hとイオンを生みだす機能。酸性になる理由は、主に2つあります。1. 大きな情動圧力。2. 酸性食品の過剰摂取。健康な 体格は、弱アルカリ性で簡単には病気にかかりません。

(アレルギー) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測 値	測定結果
薬物アレルギー指標	0. 431 - 1. 329	1. 183	
アルコールアレルギー指標	0. 432 <i>-</i> 1. 246	1. 688	
花粉アレルギー指標	0. 143 <i>-</i> 1. 989	1. 788	
注射アレルギー指標	0. 847 <i>-</i> 1. 045	1. 08	
化学製品アレルギー指標	0. 842 <i>-</i> 1. 643	2. 628	
塗料アレルギー指標	0. 346 <i>-</i> 1. 401	1. 458	
ダストアレルギー指標	0. 543 <i>-</i> 1. 023	1. 202	
煙アレルギー指標	0. 826 <i>-</i> 1. 013	1. 605	
毛髪染料アレルギー指標	0. 717 <i>-</i> 1. 486	2. 406	
毛皮アレルギー指標	0. 124 <i>-</i> 1. 192	1. 727	
金属(製アクセサリー)アレルギー指標	0. 549 <i>-</i> 1. 213	1. 079	
シーフードアレルギー指標	0. 449 <i>-</i> 1. 246	1. 563	
牛乳アレルギー指標	0. 477 <i>-</i> 1. 348	3. 043	

参照基準:	通常(-) 中程度の異常 (++)	やや異常(+) 深刻な異常 (+++)
薬物アレルギー指標:	0. 431–1. 329 (–) 2. 227–5. 219 (++)	1. 329–2. 227 (+) >5. 219 (+++)
アルコールアレルギー指標:	0. 432–1. 246 (–) 2. 462–5. 663 (++)	1. 246–2. 462 (+) >5. 663 (+++)
花粉アレルギー指標:	0. 143–1. 989 (–) 2. 843–5. 945 (++)	1. 989–2. 843 (+) >5. 945 (+++)
注射アレルギー指標:	0. 847–1. 045 (–)	1. 045–1. 847 (+)

化学製品アレルギー指標: 0.842-1.643(-) 2.721(+) 3.943(+++) 3.943(+++) 3.943(+++) 3.943(+++) 3.943(+++) 3.943(+++) 3.943(+++) 3.943(+++) 3.943(+++) 3.943(+++) 3.943(+++) 3.943(+++) 3.943(+++) 3.943(+++) 4.311(+++) 4.311(+++) 4.311(+++) 5.543(-2.346-4.311(++) 5.2.872(+++) 5.541(+++) 5.5.541(+++) 5.5.541(+++) 5.5.541(+++) 5.5.541(+++) 5.5.541(+++) 6.124-4.369(++) 7.5.541(+++) 6.124-4.369(++) 7.5.541(+++) 6.124-4.369(++) 7.5.541(++) 7		1. 847–2. 663 (++)	>2. 663 (+++)
タストアレルギー指標: 0.543-1.023(-) 1.023-1.543(+) 2.872(+++) 煙アレルギー指標: 0.826-1.013(-) 1.013-2.826(+) 2.826-4.213(++) 34.213(+++) 1.543-2.872(+++) 2.717-5.541(++) 35.541(+++) 1.486(-) 1.486-2.717(+) 2.717-5.541(++) 35.541(+++) 1.192-2.124(+) 2.124-4.369(++) 34.369(+++) 36.29(+++) 33.229(+++) シーフードアレルギー指標: 0.449-1.246(-) 1.246-2.844(+)	化学製品アレルギー指標:	• •	` ,
1. 543-2. 872 (++) >2. 872 (+++) 煙アレルギー指標: 0. 826-1. 013 (-) 1. 013-2. 826 (+) 2. 826-4. 213 (++) >4. 213 (+++) 毛髪染料アレルギー指標: 0. 717-1. 486 (-) 1. 486-2. 717 (+) 2. 717-5. 541 (++) >5. 541 (+++) 毛皮アレルギー指標: 0. 124-1. 192 (-) 1. 192-2. 124 (+) 2. 124-4. 369 (++) >4. 369 (+++) 金属(製アクセサリー)アレルギー指標: 0. 549-1. 213 (-) 1. 213-2. 549 (+) 標: 2. 549-3. 229 (++) >3. 229 (+++) シーフードアレルギー指標: 0. 449-1. 246 (-) 1. 246-2. 844 (+)	塗料アレルギー指標:		
2.826-4.213(++) >4.213(+++) 毛髪染料アレルギー指標: 0.717-1.486(-) 1.486-2.717(+) 2.717-5.541(++) >5.541(+++) 毛皮アレルギー指標: 0.124-1.192(-) 1.192-2.124(+) 2.124-4.369(++) >4.369(+++) 金属(製アクセサリー)アレルギー指 0.549-1.213(-) 1.213-2.549(+) 標: 2.549-3.229(++) >3.229(+++) シーフードアレルギー指標: 0.449-1.246(-) 1.246-2.844(+)	ダストアレルギー指標:	• •	
2.717-5.541 (++)>5.541 (+++)毛皮アレルギー指標:0.124-1.192 (-)1.192-2.124 (+)2.124-4.369 (++)>4.369 (+++)金属(製アクセサリー)アレルギー指標:0.549-1.213 (-)1.213-2.549 (+)2.549-3.229 (+++)>3.229 (+++)シーフードアレルギー指標:0.449-1.246 (-)1.246-2.844 (+)	煙アレルギー指標:	• •	
金属(製アクセサリー)アレルギー指標:2. 124-4. 369 (+++)>4. 369 (+++)0. 549-1. 213 (-)1. 213-2. 549 (+)2. 549-3. 229 (+++)>3. 229 (+++)シーフードアレルギー指標:0. 449-1. 246 (-)1. 246-2. 844 (+)	毛髪染料アレルギー指標:		` ,
標: 0.549-1.213(-) 1.213-2.549(+) 2.549-3.229(+++) >3.229(+++) シーフードアレルギー指標: 0.449-1.246(-) 1.246-2.844(+)	毛皮アレルギー指標:	• •	` ,
シーフードアレルギー指標: 0.449-1.246(-) 1.246-2.844(+)		, ,	
· · · · · · · · · · · · · · · · · · ·		2. 549–3. 229 (++)	>3. 229 (+++)
	シーフードアレルギー指標:		
牛乳アレルギー指標:0. 477-1. 348 (-)1. 348-4. 477 (+)4. 477-8. 742 (++)>8. 742 (+++)	牛乳アレルギー指標:	• •	• •

項目の説明

薬物アレルギー指標:

薬物アレルギーは薬物から引き起こされるアレルギー反応です。アレルギー反応とは異常な免疫反応の事を言います。微弱なものであれ、激烈なものであれ、異常な免疫反応は様々な障害を引き起こします。通常、皮膚の赤らみ、かゆみ、動悸、湿疹、呼吸困難、深刻なショック症状または死亡などが症状としてあります。

アルコールアレルギー指標:

アルコールアレルギーは体内にアセルアドヒト(分解)酵素が欠乏している事からおきます。外部症状は肌のアレルギー反応です。アルコール(エタノール)はアセトアデルヒトの形で人体に吸収され、アルコールアレルギーの人はアセトアデルヒト分解酵素が無い為、酢酸として体内に排出することができず、アセトアデルヒト中毒になります。その際、様々な症状を引き起こします。大量のアルコールを飲める方はこの酵素があるから体外に排出できる為、中毒症状がおきません。アレルゲンがアルコールとい接触すると様々なアレルギー症状がおこります。

花粉アレルギー指標:

花粉の直径はおおよそ30~50ミクロンで空気中を漂い、呼吸器に簡単に吸入されます。 花粉アレルギーを持つ方は、花粉を吸入した際にアレルギー反応を起こします。花粉アレルギーの主な症状は、くしゃみ、鼻水、流涙、鼻、目の痒みや、外耳道、また深刻な気管支炎、気管支ぜんそく、肺心症などを発症する場合があります。人体が花粉アレルギーを発症する仕組は、花粉は豊富にタンパク質を含み、それがアレルゲンとなってします為です。

注射アレルギー指標:

注射アレルギーを起こしやすいものとしては:ペニシリン、トレプトマイシン、その他異種性血清などがあり、人口の5~6%がアレルギーであると言われています。どの年齢層であれ、どんな容量であれ、どんな摂取方法であれ、アレルギー反応を起こす可能性があります。ですので、まず注射をする前にまずアレルギーテストを行い、陰性である事を確認してから治療を始めた方が良いでしょう。

化学製品アレルギー指標:

石炭、石油、ガスや高分子化合物や窒素化合物を原材料とする化学繊維など、なにかがアレルギーとなり、皮膚の痛み、かゆみ、腫物、水ぶくれなどのアレルギー性皮膚炎を発症させます。

塗料アレルギー指標:

塗料はその他の化学製品よりアレルギーを発症しやすいものとして知られています。ですが、症状は塗料の品質の問題ではなく、我々の体が判断するものなのです。主に2つの塗料アレルギー症状があり、一つ目は塗料によっておきるアレルギー性鼻炎、鼻をこする、頻繁なくしゃみ、鼻水、塗料の匂いを嗅ぐことによる吐き気と嘔吐、二つ目はアレルギー性皮膚炎で手、体などに赤い斑点などが出来、炎症やかゆみを生じます。

ダストアレルギー指標:

埃の吸引からアレルギーを発症する事があります。このアレルギー症状は、鼻の痒み、 皮膚の痒み、目の痒み、息切れ、咳などです。ぜんそくの症状がでたら治療の為、病院 に行ってください。

煙アレルギー指標:

このアレルギーは煙の吸引に対するアレルギーです。アレルゲンを含む煙を吸引した際にくしゃみ、鼻水などが起こり、またアレルギー性皮膚炎をおこす場合もあり、その際はかゆみ、痛み、腫物、水ぶくれなどの症状が出ます。

毛髪染料アレルギー指標:

毛髪染料によって引き起こされる毛髪染料アレルギーはアレルギー性の接触性皮膚炎、頭皮の腫物、かゆみ、深刻な場合は頭皮、首、顔などに腫物ができ水ぶくれから膿性の黄色い液がでる場合があります。毛髪染料は原料に「p-フェニレンジアミン」と呼ばれる化学物質であり、皮膚に簡単にダメージを与えます。より多く毛髪染料を使えば使うほど、化学物質が髪や頭皮を攻撃することとなり、毛髪染料アレルギーが発生する率が高まります。

毛皮アレルギー指標:

毛皮アレルギーは毛皮への接触から起こるアレルギーです。毛皮に接触した後のアレルギー症状は鼻のかゆみ、皮膚のかゆみ、目の痒み、息切れや咳です。

金属(製アクセサリー)アレルギー指標:

殆どの金属製アクセサリーは少量のニッケル、銅、クロムや他の金属アレルゲンを含んでいます。皮膚の毛穴や皮脂腺から金属製アクセサリーの少量の硫酸やニッケルなどが入りこみ、体内のいくつかのタンパク質と、発熱、発汗、毛穴・毛細血管の拡張や炎症などを引きおこします。

シーフードアレルギー指標:

海産物アレルギーは海産物の多種多様な異質のタンパク質から発症します。これらの異質なタンパク質は免疫細胞を直接/間接的に活発化させ、化学伝達物質を放出させるなど、様々な複雑な生化学反応をおこします。この抗原抗体反応が人体にアレルギー症状を起こします。

牛乳アレルギー指標:

牛乳アレルギーは牛乳のタンパク質にアレルギーがある為に起こります。湿疹、嘔吐、 下痢、腹痛などの症状が見られます。

(肥満度) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測 値	測定結果
脂質代謝異常係数	1. 992 <i>-</i> 3. 713	1. 58	
褐色脂肪組織異常係数	2. 791 <i>-</i> 4. 202	4. 105	0
高インシュリン血症係数	0. 097 <i>-</i> 0. 215	0. 129	0
視床下部異常係数	0. 332 - 0. 626	0. 485	0
トリグリセリド(中性脂肪)貯蔵量異 常係数	1. 341 <i>-</i> 1. 991	2. 398	

参照基準:	通常(-) 中程度の異常 (++)	やや異常(+) 深刻な異常 (+++)
脂質代謝異常係数:	1. 992–3. 713 (–) 0. 782–1. 113 (++)	1. 113–1. 992 (+) <0. 782 (+++)
褐色脂肪組織異常係数:	2. 791–4. 202 (–) 1. 691–2. 020 (++)	2. 202–2. 791 (+) <1. 691 (+++)
高インシュリン血症係数:	0. 097-0. 215 (-) 0. 426-0. 519 (++)	0. 215-0. 426 (+) >0. 519 (+++)
視床下部異常係数:	0. 332-0. 626 (-) 0. 832-0. 958 (++)	0. 626-0. 832 (+) >0. 926 (+++)
トリグリセリド(中性脂肪)貯蔵量異常 係数:	1. 341–1. 991 (–) 3. 568–5. 621 (++)	1. 991–3. 568 (+) >5. 621 (+++)

項目の説明

脂質代謝異常係数:

脂質代謝異常は先天性または後天性の異常な脂質並びに代謝物を血中や組織、器官に排出してしまう事を言います。脂質の代謝は遺伝子、神経、体液、ホルモン、酵素、肝組織やその他の器官でコントロールされていますが、脂質代謝異常障害は病態生理学上で変化をもたらします。症状は高リポ蛋白血症、脂質蓄積症、肥満、脂肪肝などです。

褐色脂肪組織異常係数:

褐色脂肪組織は発熱器官としての機能を持ち、体が食物を摂取した際や気温が低い状態 の際、褐色脂肪細胞は脂肪を燃やし、体内でどの程度までエネルギーを代謝するかを決 定します。両方の場合、食物誘導、寒冷誘導がエネルギー生産を引き起こす事が知られています。褐色脂肪組織の熱生産は体熱で制御され、余分な熱は体外へ排出、エネルギー代謝を調整します。褐色脂肪組織の熱生産は(脂肪を燃やすことにより)栄養バランスを整え、肥満を予防します。

高インシュリン血症係数:

肥満はしばしば高インシュリン血症を伴います。その為、肥満が高インシュリン血症の原因と考えられています。高インシュリン血性肥満の場合、インシュリンの放出量は通常の三倍にも上ります。インシュリンは脂肪の集積を加速させるので、インシュリンは肥満度の指標として使われます。血中インシュリン濃度は肥満と非常に強い相関性を持ちます。

視床下部異常係数:

人間並びに多数の動物は視床下部に2つの摂食回路を持ちます。腹内側核(VMH)は中枢としても知られ、外側野(LHA)はまたハブとして知らます。中枢は摂食阻害物質を放出して食欲を抑制し、中枢神経系は飢餓時、拒食症、栄養失調の際に刺激を受けます。双方で抑制し、生理学上の状態として食欲を抑え、通常の範囲の体重を抑える様にします。視床下部に炎症や後遺症(髄膜炎や脳炎など)、外傷、腫瘍、病変や中間の核が損傷した際、腹内側核の機能が失われ、甲状腺機能亢進症や大食症などを発症し肥満につながります。逆に腹内側核や外側野の機能が活動過多になった場合、食欲の減退が起き、体重の減少につながります。

トリグリセリド(中性脂肪)貯蔵量異常係数:

日々のカロリー消費の中で、過剰分はまず肝臓と筋肉にグリコーゲンの形で貯蔵されます。そして、ほとんどすべてが脂肪に変換・貯蔵されることになります。中性脂肪はグリコーゲンの貯蔵量に限界がある事から生まれます。つまり、脂肪は体熱の貯蔵庫でもあるのです。中性脂肪と炭水化物の過剰摂取は脂肪の合成につながり、肥満の外部要因となります。

(肌質) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
肌フリーラジカル指標	0. 124 - 3. 453	5. 153	
皮膚コラーゲンあ指標	4. 471 - 6. 079	2. 049	- U
皮膚脂質指標	14. 477 - 21. 348	31. 747	0
皮膚免疫指標	1. 035 - 3. 230	1. 267	0
皮膚水分指標	0. 218 - 0. 953	1. 216	- U
皮膚の水分損失	2. 214 - 4. 158	6. 371	0
紅斑指標	0. 824 - 1. 942	1. 973	0
皮膚弾性指標	2. 717 - 3. 512	2. 841	0
皮膚メラニン指標	0. 346 - 0. 501	0. 819	0
皮膚の角質化 指標	0. 842 - 1. 858	1. 555	

参照基準:	通常(-) 中程度の異常(++)■	■■ やや異常(+) ■■ 深刻な異常(+++)
肌フリーラジカル指標:	0. 124-3. 453 (-) 6. 723-9. 954 (++)	3. 453-6. 723 (+) >9. 954 (+++)
皮膚コラーゲンあ指標:	4. 471–6. 079 (–) 1. 453–2. 879 (++)	2. 879-4. 471 (+) <1. 453 (+++)
皮膚脂質指標:	14. 477–21. 348 (–) 28. 432–35. 879 (++)	21. 348–28. 432 (+) >35. 879 (+++)
皮膚免疫指標:	1. 035-3. 230 (-) 5. 545-7. 831 (++)	3. 230–5. 545 (+) >7. 831 (+++)
皮膚水分指標:	0. 218-0. 953 (-) 1. 623-2. 369 (++)	0. 953-1. 623 (+) >2. 369 (+++)
皮膚の水分損失:	2. 214-4. 158 (-) 6. 076-7. 983 (++)	4. 158–6. 076 (+) >7. 983 (+++)
紅斑指標:	0. 824-1. 942 (-) 3. 141-4. 231 (++)	1. 942–3. 141 (+) >4. 231 (+++)

皮膚弾性指標: 2.717-3.512(-) 1.521-2.717(+)

0. 645–1. 521 (++) <0. 645 (+++)

皮膚メラニン指標: 0.346-0.501(-) 0.501-0.711(+)

0. 711-0. 845 (++) >0. 845 (+++)

皮膚の角質化 指標: 0.842-1.858(-) 1.858-2.534(+)

2. 534–3. 316 (+++) >3. 316 (+++)

項目の説明

肌フリーラジカル指標:

人体内部の毒物がに最も害を与えます。毒物は人体の酸化反応によって常に作られ、加齢プロセス、薬理学上および毒物硬効果に重要な役割を果たします。また、人体のタンパク質やDNAなどを傷つけ、細胞死(アポトーシス)やがんの原因となります。その結果、肌はたるみ、また縮み、皺を形成し、乾くことになります。

皮膚コラーゲンあ指標:

コラーゲンは高分子系生体材料です。動物細胞の組織を結合し、バイオ業界の中で最も重要視される原材料であり、高い需要を持つ材料です。使用用途は様々で、化粧品、食品業界、調査目的などに使用されています。コラーゲンは徐々に化粧品やスキンケアのフィールドに参入しつつあります。コラーゲンは人体の組織構造の中で最もポピュラーな物質の一つであり、体内のタンパク質の25-33%、体重にして6%を占めます。体内の様々な組織や器官に存在し、皮膚、骨、軟骨、靭帯、角膜、内膜、筋膜などを形成します。コラーゲンは形を保つ為に重要な素材であり、皮膚や組織・器官の形を保持し、傷ついた組織を修理する原材料です。After コラーゲン in 皮質内(下記の図の黄色部分)のコラーゲンが参加is 酸化・分解された後、コラーゲンの皮膚を保持する機能がなくなり、不均一になる為、しわが出来るのです。

皮膚脂質指標:

脂性肌: 皮脂腺の排せつ機能が強く、皮膚に長時間テカリをもたらします。皮膚は厚く、また毛穴は大きいのでにきびや吹き出物が出来やすくなっています。しかし、しわはできにくいです。顔用化粧品はすぐに効力を失います。通常のケアで気を付けた方が良い点として、黒ずみ、にきびや吹き出物ができにくくなる様に皮膚の脂の分泌を抑える事と、皮膚を清潔に保つことです。集中スキンケア用品を選ぶ事が望ましく、角質除去並びにディープクレンジングを週のお手入れの中に組み込んでください。皮膚の加齢を防ぐ為、日焼け止め機能のあるモイスチャークリームを日中に使用してください。化粧品に関しては薄い表面を作り、脂分を制御するものを使用してください。

皮膚免疫指標:

人体の免疫機能はまず、皮膚から始まります。微生物やウィルス、細菌、菌類や各種アレルゲンから身を守るべく、皮膚の免疫の強化から始めましょう。 特に:

- 1. もっと多くのきのこ類(マッシュルーム、盤菌類、きくらげ、ゴールデン・マッシュルーム、アグロサイプ属などの食用きのこ)、濃い色の野菜や果物(紫キャベツ、茄子、紫色のブドウ、サツマイモなど)、亜鉛を豊富に含む食品(動物の肝臓、海産物、リンゴなど)などを食べましょう。亜鉛は免疫を強化し、同時に皮膚にとっても良い効果があります。
- 2. また適切な運動をし、仕事と休みのバランスをとりましょう。特に夜更かしを避けて、早めに寝ましょう。
- 3. 心臓を健康な状態に保ちましょう。

皮膚水分指標:

乾燥肌は女性の一番の問題です。最近の調査によると、60%の女性が乾燥肌の問題で困っていると回答しました。これはしわよりも多い回答です。更にその中の70%は冬の間、体の皮膚が乾燥していると答え、40%が乾燥肌だと回答しました(夏の場合は34%と15%で

す)。

乾燥肌が起きる原因は下記のとおりです:

1. 加齢

皮膚が水分を保持する能力の低下、並びに加齢による皮膚分泌の低下

2. 皮膚分泌分の不足

皮膚の表面は皮脂膜で覆われており、皮膚が適切な水分を保つ働きをしています。皮膚 分泌が一度減少すると、分泌物で皮脂膜を作成できなくなり、皮膚が乾燥します。

3 低気温

皮脂物と汗は寒い冬に激減します。ですが、空気も乾燥している為、皮膚の水分も徐々に蒸発し、皮膚の表面にザラつきができ、抵抗力が弱まります。

4. 寝不足

寝不足と疲労は体に大きなダメージを与え、また血行を低下させます。健康状態が悪くなった時、皮膚にエネルギーが行かなくなり、乾燥しやすくなったり、荒れる傾向にあります。

5. 体重の減少並びに偏食

急激な体重の減少や偏食は皮膚を乾燥させる事があります。皮膚が十分な栄養を摂取できなかった場合、皮膚は柔軟性と水分を失います。乾燥肌の障害は乾燥肌病としても知られています。

6. その他

暖房の温度が高すぎる場合、熱すぎる風呂に入った場合、きつい石鹸や洗剤、内分泌の変化、(例:閉経後のエストロゲン減少など)の場合も乾燥肌を招く場合があります。

皮膚の水分損失

通常、皮膚の角質は10%-30%の水分があれば弾性(柔らかさ)を保持できます。冬に入った際、空気が急に冷たく乾き、また、日中と夜間の気温差が大きくなると皮脂腺からの分泌物や汗が減り、皮膚内の水分も急激に減少します。

紅斑指標:

紅斑は人体の表面、特に顔、腹部、臀部の毛細血管の拡張によって起きる斑状、または 線状の赤い痕です。これは一般的な皮膚病であり、また様々なかゆみや痛みが出る場合 があります。

皮膚弾性指標:

強力な紫外線は皮膚の弾性を失わせ、皮膚の角化症を招き早期の老化につながります。 紫外線によってダメージを負った皮膚の弾性は食品や化粧品を通じて改善する事が可能 です。人体の組織の72%は水分であり、成人の水分含有量は58~67%になります。特に 熱い夏は人体の中の水分が減少するので、乾燥肌や皮脂腺からの分泌物が減り、皮膚の 弾性を失わせます。その為、適切な量の水分を摂取する事が重要となります。一日の摂 取量の目安は1.5リットルとなります。

皮膚メラニン指標:

メラニンは人の皮膚、粘膜、網膜、軟膜、胆嚢や卵巣など、様々な場所に存在します。 メラニンはメラニン細胞で構成されており、肌のメラニン細胞は通常、表皮内の基底層 や毛根、毛鞘にあります。人間の表皮はおおよそ1グラムには20億のメラニン細胞がある といわれ、これは平均 1560個/平方ミリメートルで分布していることになります。メラ ニンはメラノサイト(色素細胞)から生成される。メラニンの生成過程は非常に複雑 で、チロシン - チナシローゼ 反応から生成されます。肌の色を変える様な白斑やメラ ニン形成における障害は、代謝が関係しているものと考えられています。

皮膚の角質化 指標:

皮膚は表皮、真皮、皮下組織の3つに分かれます。さらに表皮は下から順に基底層、有棘細胞層、顆粒層、透明層、角質の5つがあります。皮膚細胞は基底層から成長をはじめ、上へと成長し、角質が皮膚細胞の再生における最終段階になります。皮膚の表面にある角質は厚いものですが、一定時間後は光沢を失い、剥がれ落ちたり、皺になったり、ニキビとなったりします。皮膚の角質生成サイクルはおおよそ1か月単位で行われるので、美容エキスパートは28日置きに角質除去を行います。

(目) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
目のたるみ	0. 510 - 3. 109	3. 106	0
コラーゲン/目じりの皺	2. 031 - 3. 107	2. 42	0
目の周りのくま	0. 831 - 3. 188	6. 279	0
リンパ管閉塞	1. 116 - 4. 101	1. 144	0
たるみ	0. 233 - 0. 559	0. 55	0
浮腫(水腫)	0. 332 - 0. 726	1. 295	0
眼細胞活性	0. 118 - 0. 892	0. 846	0
眼精疲労	2. 017 - 5. 157	8. 47	0

参照基準:	通常(-) 中程度の異常(++)	■ やや異常(+) ■ 深刻な異常(+++)
目のたるみ:	0. 510–3. 109 (–) 7. 285–9. 729 (++)	3. 109–7. 285 (+) >9. 729 (+++)
コラーゲン/目じりの皺:	2. 031–3. 107 (–) 0. 486–1. 107 (++)	1. 107–2. 031 (+) <0. 486 (+++)
目の周りのくま:	0. 831–3. 188 (–) 5. 615–8. 036 (++)	3. 188–5. 615 (+) >8. 036 (+++)
リンパ管閉塞:	1. 116–4. 101 (–) 7. 348–9. 907 (++)	4. 101–7. 348 (+) >9. 907 (+++)
たるみ:	0. 233-0. 559 (-) 1. 066-1. 549 (++)	0. 559–1. 066 (+) >1. 549 (+++)
浮腫(水腫):	0. 332-0. 726 (-) 1. 226-1. 708 (++)	0. 726–1. 226 (+) >1. 708 (+++)
眼細胞活性:	0. 118-0. 892 (-) 1. 37-1. 892 (++)	0. 892-1. 37 (+) >1. 892 (+++)
眼精疲労︰	2. 017–5. 157 (–) 8. 253–10. 184 (++)	5. 157–8. 253 (+) >10. 184 (+++)

項目の説明

目のたるみ:

目のたるみとは下まぶたの皮膚に、皮下組織、筋肉や環状隔膜の弛緩、環状脂肪肥大、隆起の形成などが起こる事を言います。

コラーゲン/目じりの皺:

結合繊維、コラーゲン繊維の主な成分はコラーゲンです。コラーゲンと結合組織は靭性と弾性の両方を持ち、形を保ったまま器官や組織を外部の力から守ります。

目の周りのくま:

夜更かし、情緒不安定、眼精疲労、加齢、静脈の血流が遅すぎたり、目の皮膚への赤血球の酸素不足、静脈の二酸化炭素や老廃物の過剰集積、慢性低酸素症、停滞した血液などが、目の周りに変色をもたらします。

リンパ管閉塞:

リンパ管閉塞は様々な理由によって起こり得ますが、二種類に分かれます。一つは原発性(発症理由がわからないもの)と、続発性です。続発性は炎症、がん、外傷や放射線治療が原因となっておこります。

たるみ:

時間がたつにつれ細胞間の繊維が劣化し、皮膚の弾性が失われます。皮膚のたるみは皮下脂肪の減少、皮膚を支えている筋肉の弛緩などがもたらします。

浮腫(水腫):

血行の影響に伴い、体が過剰な水分を排出できなくなる場合があります。毛細血管の水 分含有量が多くなったり皮膚に湿潤したりすると、浮腫(水腫)が形成されます。

眼細胞活性:

細胞活性とは細胞の生理学上の状態と機能であり、気温が低下すると細胞の代謝も低下します。気温の低下が続くと細胞死の原因となります。ただ、ある程度低い気温であれば、細胞は呼吸を停止させ、通常の気温で蘇生させる事も出来ます。その際、急に高い温度にしても細胞死につながります。

眼精疲労:

眼精疲労は仕事や勉強などで過剰に目を使用すると起こりやすくなります。この症状は、精密作業、コンピュータを使用した作業、光の不足や近視、遠視、老眼や眼球の屈折エラーなどから起こります。代表的な症状は:かすみ目、読み書きが出来なくなったり、ドライアイ、めまい、痛み、深刻な吐き気や嘔吐です。

(コラーゲン) 分析レポート

名前:事例(女性) 性別:女性 年齡:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
目	6. 352 - 8. 325	4. 995	
歯	7. 245 - 8. 562	4. 766	0
髪並びに皮膚	4. 533 - 6. 179	4. 534	
内分泌系	6. 178 - 8. 651	3. 962	
循環系	3. 586 - 4. 337	2. 156	- U
消化器系	3. 492 - 4. 723	3. 495	
免疫系	3. 376 - 4. 582	4. 383	
運動系	6. 458 - 8. 133	3. 133	
筋組織	6. 552 - 8. 268	7. 769	
脂質代謝	6. 338 - 8. 368	4. 63	
解毒並びに代謝	6. 187 - 8. 466	7. 397	
生殖機能	3. 778 - 4. 985	3. 021	
神経系	3. 357 - 4. 239	3. 463	
骨格	6. 256 - 8. 682	6. 37	

目: 6. 352-8. 325 (-) 4. 213-6. 352 (+)

2. 382-4. 213 (++) <2. 382 (+++)

歯: 7. 245-8. 562 (-) 5. 981-7. 245 (+)

4. 694–5. 981 (++) <4. 694 (+++)

髪並びに皮膚: 4.533-6.179(-) 2.914-4.533(+)

1. 526–2. 914 (++) <1. 526 (+++)

内分泌系: 6. 178-8. 651 (-) 3. 826-6. 178 (+)

1. 532–3. 826 (++) <1. 532 (+++)

循環系: 3.586-4.337(-) 2.791-3.586(+)

	1. 964–2. 791 (++)	<1. 964 (+++)
消化器系:	3. 492-4. 723 (-) 0. 987-2. 116 (++)	2. 116–3. 492 (+) <0. 987 (+++)
免疫系:	3. 376-4. 582 (-) 1. 101-2. 127 (++)	2. 127–3. 376 (+) <1. 101 (+++)
運動系:	6. 458–8. 133 (–) 2. 826–4. 715 (++)	4. 715–6. 458 (+) <2. 826 (+++)
筋組織:	6. 552–8. 268 (–) 3. 117–4. 832 (++)	4. 832-6. 552 (+) <3. 117 (+++)
脂質代謝:	6. 338–8. 368 (–) 2. 362–4. 326 (++)	4. 326–6. 338 (+) <2. 362 (+++)
解毒並びに代謝:	6. 187–8. 466 (–) 1. 783–3. 904 (++)	3. 904–6. 187 (+) <1. 783 (+++)
生殖機能:	3. 778–4. 985 (–) 1. 391–2. 569 (++)	2. 569-3. 778 (+) <1. 391 (+++)
神経系∶	3. 357-4. 239 (-) 1. 526-2. 415 (++)	2. 415–3. 357 (+) <1. 526 (+++)
骨格∶	6. 256–8. 682 (–) 1. 517–3. 827 (++)	3. 827–6. 256 (+) <1. 517 (+++)

項目の説明

目:

ドライアイ、(眼精)疲労、流涙、角膜透明度の劣化、水晶体混濁や白内障など様々な眼疾患につながります。

歯:

カルシウム損失、虫歯になりやすくなる、歯周病:歯が抜けやすくなる、歯の損失、痛みが起こることがあります。

髪並びに皮膚:

ドライヘアー、切れ毛、抜け毛、禿、枝毛、ふけの増加; 肌のたるみ、頬、顎、たれ目など。コラーゲン繊維の断裂は皺の増加や耳から顎のラインが不明瞭になったり、二重顎の中の脂肪集積、乾燥肌、敏感肌、柔軟性の低下、角質化、毛穴の肥大化、脂性、深刻なしみなどがあります。

内分泌系:

女性の場合、身体的特性がよりわかりやく、無月経、月経、月経障害、早期閉経、形成 異常、胸のたるみ、乳房肥大症、乳がんに罹りやすくなったり、男性機能の障害、イン ポテンツ、早漏が起こります。女性と比較し男性はわかりにくい場合があります。

循環系:

血管壁の弾性に変化があったり、血圧の安定に(悪)影響を及ぼします。悪化すると血液粘度の上昇、脂肪肝、高コレステロール血症、血行の鈍化、吸収・代謝不全や心血管病・脳血管病が起こります。また、記憶喪失、 めまい、忘れっぽくなる、不眠症などもなりやすくなります。

消化器系:

腹圧が下がり、内臓下垂、ウェスト(腹部)サイズの増大、鼓腸(胃腸にガスがたまること)などがおきます。また、肝臓の解毒機能の異常、胆石、分泌不全や吸収不全、糖 尿病、造血機能の低下、悪性貧血や体力の低下なども発症しやすくなります。

免疫系:

リンパ循環の鈍化は免疫の低下につながります。免疫能力の低下から感染症、筋肉痛、 脱力感や他の症状がでます。

運動系:

関節痛や、リウマチへのなりやすさの減少、骨や関節の柔軟性; 関節の硬直、骨肥大症; back 経絡のつまり、代謝不全、背中の脂肪の集積; リウマチになりやすくなる、一般的な筋委縮症、骨の変形; 冷え性、四肢の痺れ、骨の治りが遅い、カルシウムの損失; 靭帯(コラーゲン)を痛めやすくなる、柔軟な変化が関節や骨格に対してダメージを与える; 繊維組織がつぶれ、ヒップのたるみや変形、脂肪の集積などが、蛙足を形成する。

筋組織:

脂肪量、頸部筋肉の効果、頚椎症の増加:背中の痛み、肩こり、: 結合組織のブロック (?)、神経系への乳酸集積、Yin hinder the reflex areas:筋肉の収縮の劣化、エネルギーロス、筋肉が攣る、筋緊張の低下、eight-character drooping like.

脂質代謝:

代謝の低下、脂肪の集積は酸性;疲労しやすくなる、飲み物をこぼす:糖尿病、高血圧になりやすくなり、肝および腎不全につながる。

解毒並びに代謝:

体内に毒物を集積しやすくなり、黄疸、肌荒れ、便秘、肥満、酸化;様々な内臓機能の低下、腎臓および脾臓の代謝異常、腎炎の傾向や重篤な場合、腎不全につながる;皮膚の赤み、皮膚のかゆみ、皮膚の痛み、脂肪粒子;ニキビ、様々な皮膚病,内臓の機能不全、気分の落ち込み、皮膚がんなど。

生殖機能:

子宮からの不正出血、泌尿器からの失禁、卵巣萎縮症、低い免疫、解毒並びに代謝: 膣の弛緩や乾き、不妊症、月経障害や習慣性流産: インポテンツ、セックスレス、腹部の肥大;妊娠線、肛門の筋肉の弛緩、排便痛、痔、骨盤痛。

神経系:

コラーゲンは大量のアミノ酸を含み、新しいコラーゲンの合成のみならず、脳内の中枢神経抑制メカニズムにも使用されています。その為、コラーゲンの損失は記憶喪失、集中力の低下、不眠症、不安、うつ、神経過敏、不安、更年期障害、反射能力の低下、神経痛などにつながります。

骨格:

骨の約20%はコラーゲンで構成されており、コラーゲンの損失は骨密度の低下につながります。そして空洞の形成につながり、大量のカルシウムが流出する事になります。その際、骨や関節の痛み、骨棘、委縮症、骨の肥大化、骨がんや足の麻痺、足の関節が柔軟性を失い屈めなくなるなどや、骨粗鬆症などが起こり得ます。また、グルコサミンは補助とならず、骨折しやくなったり、骨の治癒速度が遅くなったり、骨の靭性の低下や骨が脆くなります。

(側副血管) 分析レポート

名前:事例(女性) 性別:女性 年齡:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
手の太陰肺経	48. 264 - 65. 371	62. 828	0
手の陽明大腸経	56. 749 - 67. 522	53. 721	O
足の陽明胃経	0. 481 - 1. 043	0. 593	0
足の太陰脾経	0. 327 - 0. 937	0. 412	0
手の小陰心経	1. 672 - 1. 978	1. 802	D .
手の陽明小腸経	0. 192 - 0. 412	0. 616	
足の陽明膀胱経	4. 832 - 5. 147	3. 624	Ū.
足の小陰腎経	3. 321 - 4. 244	3. 904	D .
手の小陰心包経	1. 338 - 1. 672	1. 589	
手の陽明三焦経	0. 669 - 1. 544	1. 378	- O
足の太陰胆経	1. 554 - 1. 988	1. 329	D.
足の小陰肝経	1. 553 - 2. 187	1. 734	0
腎齊舞	11. 719 - 18. 418	10. 206	
督脈	0. 708 - 1. 942	1. 289	0
任脈	6. 138 - 21. 396	18. 457	0
太舞	5. 733 - 7. 109	7. 048	

参照基準:	■■ 通常(-)	■ やや異常(+)
参 照基华·	□□□ 中程度の異堂(++)■	

手の太陰肺経: 48. 264-65. 371 (-) 45. 074-48. 264 (+)

35. 348-45. 074 (++) <35. 348 (+++)

手の陽明大腸経: 56.749-67.522(-) 50.833-56.749(+)

30. 097–50. 833 (++) <30. 097 (+++)

足の陽明胃経: 0.481-1.043(-) 0.316-0.481(+)

0. 109–0. 316 (++) <0. 109 (+++)

足の太陰脾経: 0.327-0.937(-) 0.301-0.327(+)

	0. 225-0. 301 (++)	<0. 225 (+++)
手の小陰心経:	1. 672–1. 978 (–) 0. 427–1. 131 (++)	1. 131–1. 672 (+) <0. 427 (+++)
手の陽明小腸経:	0. 192-0. 412 (-) 0. 726-1. 476 (++)	0. 412-0. 726 (+) >1. 476 (+++)
足の陽明膀胱経:	4. 832–5. 147 (–) 1. 476–2. 726 (++)	2. 726-4. 832 (+) <1. 476 (+++)
足の小陰腎経:	3. 321–4. 244 (–) 1. 476–2. 726 (++)	2. 726-3. 321 (+) <1. 476 (+++)
手の小陰心包経:	1. 338–1. 672 (–) 0. 476–0. 826 (++)	0. 826-1. 338 (+) <0. 476 (+++)
手の陽明三焦経:	0. 669-1. 544 (-) 0. 209-0. 416 (++)	0. 416-0. 669 (+) <0. 209 (+++)
足の太陰胆経:	1. 554–1. 988 (–) 0. 325–1. 009 (++)	1. 009–1. 554 (+) <0. 325 (+++)
足の小陰肝経:	1. 553–2. 187 (–) 0. 627–1. 031 (++)	1. 031–1. 553 (+) <0. 627 (+++)
腎齊舞︰	11. 719–18. 418 (–) 2. 476–8. 726 (++)	8. 726–11. 719 (+) <2. 476 (+++)
督脈:	0. 708-1. 942 (-) 0. 176-0. 526 (++)	0. 526-0. 708 (+) <0. 176 (+++)
任脈:	6. 138–21. 396 (–) 1. 476–4. 726 (++)	4. 726-6. 138 (+) <1. 476 (+++)
太舞:	5. 733-7. 109 (-) 1. 476-4. 726 (++)	4. 726–5. 733 (+) <1. 476 (+++)

(脳波並びに心拍) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
一回拍出係数	60. 735 - 65. 396	61. 798	0
心拍出血液量(SV)	63. 012 - 67. 892	58. 111	
心臓末梢血管抵抗(TRR)	0. 983 - 1. 265	1. 223	
脈波係数 K	0. 316 - 0. 401	0. 268	U
脳血管血液酸素飽和度(Sa)	0. 710 - 1. 109	0. 973	0
脳血管血液酸素量(CaCO2)	7. 880 - 10. 090	9. 818	
脳血管血液酸素分圧(Pa02)	5. 017 - 5. 597	5. 474	

参照基準:	通常(-) 中程度の異常(++)	■■ やや異常(+) ■■ 深刻な異常(+++)
一回拍出係数:	60. 735–65. 396 (–) 71. 246–80. 348 (++)	65. 396–71. 246 (+) >80. 348 (+++)
心拍出血液量(SV):	63. 012–67. 892 (–) 48. 097–57. 373 (++)	57. 373–63. 012 (+) <48. 097 (+++)
心臓末梢血管抵抗(TRR):	0. 983-1. 265 (-) 1. 716-2. 809 (++)	1. 265–1. 716 (+) >2. 809 (+++)
脈波係数 K:	0. 316-0. 401 (-) 0. 171-0. 226 (++)	0. 226–0. 316 (+) <0. 171 (+++)
脳血管血液酸素飽和度(Sa):	0. 710–1. 109 (–) 0. 376–0. 526 (++)	0. 526–0. 710 (+) <0. 376 (+++)
脳血管血液酸素量(CaCO2):	7. 880–10. 090 (–) 1. 716–4. 476 (++)	4. 476–7. 880 (+) <1. 716 (+++)
脳血管血液酸素分圧(Pa02):	5. 017–5. 597 (–) 3. 476–4. 726 (++)	4. 726–5. 017 (+) <3. 476 (+++)

(血液脂質) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

参照基準:

循環性免疫複合体(CIC):

測定項目	通常範囲	実測値	測定結果
血液粘度	4. 131 - 4. 562	5. 023	
総コレステロール (TC)	1.833 - 2.979	2. 771	0
トリグリセリド(中性脂肪)(TG)	1. 116 - 2. 101	1. 298	
HDLコレステロール (HDL-C)	1.449 - 2.246	2. 13	0
LDLコレステロール(LDL-C)	0. 831 - 1. 588	0. 841	
中性脂肪(MB)	0. 726 - 1. 281	0. 784	
循環性免疫複合体(CIC)	13. 012 - 17. 291	17. 825	

通常(-)

─ 中程度の異常(++)■

血液粘度:	4. 131–4. 562 (–) 5. 074–7. 348 (++)	4. 562-5. 074 (+) >7. 348 (+++)
総コレステロール(TC):	1. 833–2. 979 (–) 3. 373–4. 097 (++)	2. 979–3. 373 (+) >4. 097 (+++)
トリグリセリド(中性脂肪)(TG):	1. 116–2. 101 (–) 3. 419–5. 409 (++)	2. 101–3. 416 (+) >5. 409 (+++)
HDLコレステロール(HDL-C):	1. 449–2. 246 (–) 3. 449–5. 325 (++)	2. 246–3. 449 (+) >5. 325 (+++)
LDLコレステロール(LDL-C):	0. 831–1. 588 (–) 0. 327–0. 715 (++)	0. 715–0. 831 (+) <0. 327 (+++)
中性脂肪 (MB):	0. 726–1. 281 (–) 3. 726–6. 476 (++)	1. 281–3. 726 (+) >6. 476 (+++)

本測定結果は参照目的であり、診断の結果ではありません。

13. 012–17. 291 (–)

19. 206–24. 706 (++)

■ やや異常(+)

17. 291–19. 206 (+)

>24. 706 (+++)

■ 深刻な異常(+++)

(婦人科)分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
女性ホルモン	3. 296 - 8. 840	5. 485	
性腺刺激ホルモン(ゴナドトロピン)	4. 886 - 8. 931	3. 907	
プロラクチン	3. 142 - 7. 849	5. 222	
プロゲストロン	6. 818 <i>-</i> 16. 743	9. 39	
膣炎係数	2. 204 - 2. 819	3. 204	
膣炎係数 (PID) 係数	1. 348 - 3. 529	1. 924	
垂炎係数	2. 301 - 4. 782	3. 382	
子宮頚官炎係数	2. 845 - 4. 017	4. 528	
卵巣嚢腫係数	2. 012 - 4. 892	4. 556	

参照基準:	通常(-) 中程度の異常 (++)	やや異常(+) 深刻な異常 (+++)
女性ホルモン:	3. 296-8. 840 (-) 0. 213-1. 163 (++)	1. 163–3. 296 (+) <0. 213 (+++)
性腺刺激ホルモン(ゴナドトロピ ン):	4. 886-8. 931 (-)	3. 631–4. 886 (+)
	1. 843-3. 631 (++)	<1.843 (+++)
プロラクチン:	3. 142–7. 849 (–) 0. 274–1. 167 (++)	1. 167–3. 142 (+) <0. 274 (+++)
プロゲストロン:	6. 818–16. 743 (–) 0. 947–4. 109 (++)	4. 109–6. 818 (+) <0. 947 (+++)
膣炎係数:	2. 204–2. 819 (–) 3. 421–3. 948 (++)	2. 819–3. 421 (+) >3. 948 (+++)
膣炎係数(PID) 係数:	1. 348-3. 529 (-) 5. 755-7. 948 (++)	3. 529–5. 755 (+) >7. 948 (+++)
垂炎係数∶	2. 301-4. 782 (-) 7. 213-9. 413 (++)	4. 782-7. 213 (+) >9. 413 (+++)

子宮頚官炎係数: 2.845-4.017(-) 4.017-5.327(+)

5. 327-6. 548 (++) >6. 548 (+++)

卵巣嚢腫係数: 2.012-4.892(-) 4.892-7.033(+)

7. 033-9. 437 (+++) >9. 437 (+++)

項目の説明

女性ホルモン:

女性ホルモンは卵胞並びに黄体嚢胞で主に作られます。その働きとしては思春期の少女の性器、膣、卵管や子宮の成長、と 女性の第二次性徴の出現を促し、代謝に影響を与え、思春期時の成長を促進する役割を持ちます。

性腺刺激ホルモン (ゴナドトロピン):

ゴナドトロピンの役割は主に卵巣などの生殖器官の成熟を促進することです。もし、ゴナドトロピンの分泌量が不足すると、生殖器異形形成や発育遅延につながります。ゴナドトロピンは黄体形成 ホルモンと卵胞刺激 ホルモンに分かれます。思春期前のホルモン濃度は非常に低く、思春期が始まると性的成熟を促進する為、濃度が高くなります。性発達に重要な役割を持つのです。卵胞刺激ホルモンの主な役割は卵巣が卵子を作るのを促進し、黄体形成ホルモンは排卵とエストロゲン並びにプロゲストロン(黄体ホルモン)の生産です。女性の月経周期はこれらによって制御されています。思春期前はゴナドトロピン分泌が少なく、日中や夜間での差はありません。思春期が始まった後、睡眠時、ゴナドトロピンの分泌量は非常に多くなります。思春期中は大量のゴナドトロピンが睡眠中と起床時に分泌されています。思春期後、ゴナドトロピンの分泌量はほぼ成人と同じレベルにまで達します。

プロラクチン:

血中プロラクチン濃度は性行動に非常に強く関連します。現在、女性の脳下垂体で作られるゴナドトロピン分泌は卵巣のエストロゲン並びにルチンの分泌を調整し、女性の性的活動に決定的な役割を果たすと考えられています。プロラクチンは視床下部に働きかけ、エストロゲン分泌を減少させる事により、膣を乾燥させ性交を難しくします。その結果、女性が性行為での痛みや不快感を覚え、徐々に性生活を恐れる様になり、性欲そのものを減退させます。例として月経期の前後、女性の性欲は性ホルモンが減少している為比較的少なくなります。ほかの例では、女性が年を取ってくると卵巣がだんだんと小さくなり、性ホルモンのレベルが非常に低くなると性欲がなくなってきます。こういった老齢の女性に性ホルモンを補充すると性衝動を回復させる事があります。これは性ホルモンが性欲と非常に密接に関連している事を証明するものです。臨床では、膣の乾燥による性交不順が性欲の抑制や性欲が無い不妊女性を発生させることが確認されています。この試験は血中のプロラクチン濃度が、これらの不妊女性の様に高いか確認するものです。

プロゲストロン:

ルチンは主に卵巣内の黄体嚢胞から作られ、また、プロゲストロン(黄体ホルモン)として知られています。 ルチンは妊娠期の後に胎盤(プラセンタ)から分泌されます。ルチンは通常、エストロゲンの役割と似た働きをし、妊娠期中の子宮内の受精卵を安定させる役割を持ちます。例としてルチンは子宮内膜を分泌フェーズから育成ェーズに変え、子宮を安定し胎芽を定着させる役割を持ちます。エストロゲンの基本的な役割として、ルチンは乳管の拡張を促し、妊娠期後に来る授乳期の準備をします。また、ルチンは排卵後、基礎体温を1度程度上昇させる役割をもっています。排卵前の短い間、体温は通常低いのですが、排卵後、基礎体温は変化するので基礎体温の変更が排卵期間の一つの指標になります。また、ルチンは女性の子宮筋を弛緩させ子宮内で受精卵の成長が出来る様に環境を整えます。ルチンは 子宮内膜増殖や受精卵の着床準備を整え; ルチンは乳腺の発達と排卵を抑制し、妊娠期の女性は排卵をしなくなり、月経が来なくなります。

膣炎係数:

膣炎は膣粘膜および粘膜下の結合組織に起こる炎症の一種で、婦人科での外来患者の一

般的な病気です。健康な女性の通常の膣は、病原体が侵入しても自然の免疫機能が備わっています。膣の免疫機能が低下すると、病原体が侵入しやすくなり、膣炎へとつながります。若い少女や閉経後の女性の方が、思春期や妊娠期の女性より感染しやすくなっています。 これはエストロゲンが少ない上に、膣の上皮細胞(表皮)が薄い為、細胞内グリコーゲンが減少し、膣の水素イオン指数(PH)が7程度になるなど、膣の抵抗力が弱まる為です。

膣炎係数(PID) 係数:

骨盤腹膜炎とは、女性骨盤の内にある子宮、卵巣、卵管などの生殖器官や臓器の表面を 覆う腹膜に炎症が起きる事を言います。通常であれば、女性自身の免疫で細菌の感染を 防ぐ事が出来るのですが、女性の抵抗力が何らかのきっかけで弱まることにより、子宮 頚肝炎、子宮内膜炎、そして子宮腹膜炎と悪化していきます。これが骨盤腹膜炎のほと んどの原因です。慢性的な炎症があり、下腹部に強い痛みを感じます。

垂炎係数:

女性の生殖器官、卵管や卵巣の炎症は子宮付属器炎と呼ばれます。ですが、卵管卵巣炎はしばしば付属器を超えて組織炎症を起こし骨盤腹膜炎にまで進行する場合があります。解剖学上非常に近い場所にある為、診断時に骨盤膣腹膜炎の組織炎症なのか、それとも卵管炎に代表される付属器の炎症なのか判断し難い場合があります。また卵管炎、卵巣炎、骨盤腹膜炎は同じ原因で引き起こされる為、併発している場合もあります。

子宫頚官炎係数:

子宮頚官炎は妊娠可能期がかかる一般的な病気であり、急性と慢性の2種類があります。 急性子宮頚官炎は急性子宮内膜炎または急性 膣炎と併発する場合があります。これを放 置した場合、慢性子宮頚官炎は帯下(おりもの)に特に粘液や膿性粘液が出てる場合が あります。

卵巣嚢腫係数:

卵巣嚢腫は卵巣の腫瘍に分類され、ほとんどの場合20~50歳の女性に見られます。症状としては、下腹部の痛み、おりものの増加、黄色の帯下、月経時の異臭、特に固いしこり(腫瘍)、性交時の痛みなどがあります。また嚢胞がホルモンの生産に影響したり、膣からの異常出血などを引き起こす場合があります。

(胸部) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 165cm, 62kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
乳腺肥大症係数	0. 202 - 0. 991	1. 215	
急性乳腺炎係数	0. 713 - 0. 992	0. 713	0
慢性乳腺炎係数	0. 432 - 0. 826	0. 789	
内分泌疾患係数	1. 684 - 4. 472	4. 546	
乳腺繊維腺腫係数	0. 433 - 0. 796	0. 743	

参照基準:	通常(-)	やや異常 (+)
参 照基华·	── 中程度の異常(++)	深刻な異常(+++)

乳腺肥大症係数: 0.202-0.991(-) 0.991-1.754(+)

1. 754–2. 413 (++) >2. 413 (+++)

急性乳腺炎係数: 0.713-0.992(-) 0.992-1.478(+)

1. 478–1. 897 (++)

慢性乳腺炎係数: 0.432-0.826(-) 0.826-1.423(+)

1. 423–1. 991 (+++) >1. 991 (+++)

内分泌疾患係数: 1.684-4.472(-) 4.472-7.245(+)

7. 245–10. 137 (++) >10. 137 (+++)

乳腺繊維腺腫係数: 0.433-0.796(-) 0.796-1.182(+)

1. 182–1. 656 (++) >1. 656 (+++)

項目の説明

乳腺肥大症係数:

乳腺肥大症とは乳腺の繊維組織や上皮細胞の肥大症、乳管組織/乳腺小葉の構造の退行的変化/変性や結合組織の進行性増殖など指します。主な原因は内分泌疾患です。

急性乳腺炎係数:

急性乳腺炎は細菌性の感染によって起こる急性の乳房炎症で、特に黄色ブドウ球菌、連鎖球菌などによって短期間の間に膿瘍が形成されたり、リンパ節が腫れたりします。特に出産後2~6週間の女性に多く、産婦の乳頭の割れ目から細菌が入ったり、病気から発症する事があります。治療法は存在するものの痛みが強い為、予防が重要になります。

慢性乳腺炎係数:

慢性乳腺炎の特徴は非常にゆっくりとした進行で回復がしにくい点にあります。胸にし こりの様なものが出来、硬い通常腫瘍と柔らかく皮膚と密着している場合の両方があり ます。膿を吸引しきる事も難しく、また、しばしば発熱や悪感を伴います。

内分泌疾患係数:

人体は通常の機能を保つため、内分泌系は様々なホルモンを分泌し、神経系は代謝を調節しています。通常、ホルモンのバランスは保たれていますが、何らかの原因でこのバランスが崩れる(特定のホルモンが多すぎたり、少なすぎたり)と内分泌障害を起こし、それぞれ問題のあるホルモンに対応した症状が出ます。

乳腺繊維腺腫係数:

乳腺繊維腺腫は乳腺小葉の繊維組織に起こる良性腫瘍で、乳腺が増殖するものと乳腺周辺の組織、またはその両方が増殖することによって出来るしこり(腫瘤)になります。エストロゲンと密接な関連のある過剰増殖と考えられており、思春期以降、全ての年齢の女性がかかる可能性がありますが、特に18~25歳の若い女性に多く見られます。臨床の見地からいうと無痛性の乳房腫瘍です。主な症状としては胸のしこりですが、通常、胸の痛みはなく、また月経周期と関係なく乳首から体液がでます。腫瘍の進行はほとんどの場合遅いですが、妊娠期の場合進行が早まる恐れがあり、深刻な変性の場合、繊維肉腫に変わる場合があります。

(月経周期) 分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

測定結果

測定項目	通常範囲	実測値	測定結果
ベータホルモン	2. 942 - 3. 407	2. 658	
反射プロテイン	4. 713 - 5. 345	4. 806	
フィブリノゲン	2. 807 - 3. 294	2. 289	
堆積速度	6. 326 - 8. 018	6. 538	

通常(-) 中程度の異常(++)	やや異常(+) 深刻な異常(+++)
2. 942-3. 407 (-)	2. 074-2. 942 (+)
0. 626–2. 074 (++)	<0. 626 (+++)
	中程度の異常 (++)

反射プロテイン: 4. 713-5. 345 (-) 3. 833-4. 713 (+) 0. 097-3. 833 (++) <0. 097 (+++)

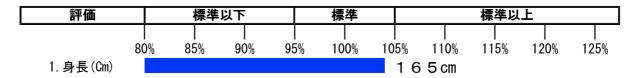
フィブリノゲン: 2.807-3.294(-) 1.116-2.807(+)

0. 809–1. 116 (++)

堆積速度: 6. 326-8. 018(-) 4. 449-6. 326(+)

1. 325-4. 449 (++) <1. 325 (+++)

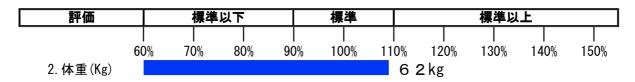
(人体構成) 分析レポート


名前:事例(女性) 性別:女性 年齢:31

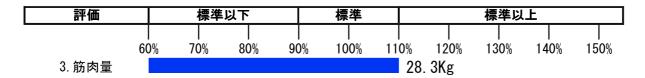
体型: 165cm, 62kg 測定日時: 2013/10/16 13:10

1. 体組成分析

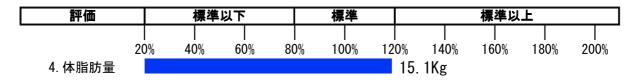
組成名	測定 結果	体内水分量	筋肉量	除脂肪体重	体重
(1)細胞内 液 (L)	14. 8				
(2)細胞外 液 (L)	7. 6	(6)体内水分量=(1)+(2)=22.4		
(3) タンパ ク質 (Kg)	5. 87		(7)筋肉量=(6)+(3)=28. 3	
(4)無機物 (Kg)	18. 6			(8)除脂肪体重=(7)+(4)=46.9
(5)体脂肪 (Kg)	15. 1			9)	9) 体重=(8)+(5)=62


2. 脂肪分析

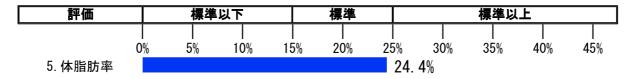
注意: 男性の平均身長は172cm、女性の平均体重は162cmです。


(遺伝)標準身長の予測方式

男性の身長 =(父親の身長 +母親の身長)*1.08/2(cm) 女性の身長=(父親の身長*0.923+母親の身長)/2(cm)



注意:世界保健機関による標準体重の計算方法


男性: (身長(cm)-80)*70% 女性: (身長(cm)-70)*60%

注意:筋肉は体重の35%-48%を占めます。筋肉が増えると共に基礎代謝は改善します。 基礎代謝とは呼吸、体温、血流などの人体の基本機能で使用するエネルギーです。筋 肉量が上がると基礎代謝も上がり、安静にしていても脂肪を燃やすことで肥満を防い でくれます。 基礎代謝が高ければ同じ食事をしていても脂肪は徐々に減るのです。 ですのでまず基礎代謝を高める為に筋肉の質を向上させる必要があります。運動や有 酸素をし、筋力を高めましょう。

注意:健康な人間の体脂肪量: 男性 14%~20% . 女性 17%~24%

注意:体脂肪率は体重中の体脂肪量の割合

男性の体脂肪率- 通常値は14~20%、軽度肥満は20%-25%、肥満は>25% 女性の体脂肪率- 通常値は17%~24%、軽度肥満は25%-30%、肥満は>30%

評価		標準以下標準標準以上										
	1 0	55 0.	60 (). 65 0	 . 70	0. 75	0.	80 O.	85 O.	90 0.	95 1	 . 00
6. 腹部脂肪率	0. (JO 0.		. 00 0	. 70	0. 73	0.	0.	00 0.	00 0.		. 00

注意: ウェスト・ヒップ比(WHR)と呼ばれ、ウェスト(cm)÷ヒップ(cm)の計算式でWHRを計算する。

WHR	通常值	腹部肥満	臀部肥満
男性	<0.9	>1.0	<1.0
女性	<0.8	>0. 85	<0.85

3. 栄養

栄養	
肥満度 (ODB)	109%
ボディマス指数(BMI)	22.8 Kg/M ²
基礎代謝率(BMR)	1385 kcal
体細胞量 (BCM)	20. 71 Kg

BMI--ボディマス指数:

低体重	普通体重	肥満	早期肥満	肥満1度	肥満2度	肥満3度
<18. 5	18. 5~22. 9	>=23	23~24. 9	25~29. 9	>30	>=40

BMR (単位:カロリー)

基礎代謝とは人体の基礎状態でのエネルギー代謝であり、平静にじっとしている状態で生命活動に必要なエネルギー量です。筋力を必要とする作業や、周囲の気温や食べ物、精神状態によっても影響を受けます。(基礎代謝率は、体表面から熱を放出し、通常値の15%を下回らない。甲状腺機能亢進症などの甲状腺病になった際は基礎代謝率は必ず上昇し、甲状腺機能が低下している場合、基礎代謝率は低下する。また、体重の減少は(基礎代謝に)多大な影響を与える。適切な運動は基礎代謝を上げるのに役立つ

が、早いペースの体重減少はネガティブな影響を与える。

4. 総合評価

総合評価								
		低体重	標準	高体重				
 筋肉の種類	低筋肉型							
別内の性類	通常		#					
	筋肉型							
		なし	良好	過剰				
栄養状態	タンパク質		#					
不受认 思	含有脂肪		#					
	無機塩		#					
		良く発達	標準	未発達				
上半身と下半身のバランス	上半身		#					
	下半身		#					
		バランス型	アンバランス型					
シンメトリー(対称性)	上半身	#						
	下半身	#						

5. 体重管理

体重管理			
目標体重	57 Kg		
体重管理	−5 Kg		
脂肪管理	−5 Kg		
筋肉管理	0 Kg		

- 1. 目標体重: 身長に対する標準体重
- 2. 体重管理: 目標体重との差。 マイナスの場合は体重を減らし、プラスの場合は体重を増やすこと。
- 3. 脂肪管理:標準的な脂肪量との差。マイナスの場合は脂肪量を減らし(有酸素運動をすることで、代謝を活発化し、余分な脂肪を燃焼させ、筋力を向上させる)、プラスの値は脂肪量を増やす。
- 4. 筋肉管理: 身長に対する標準筋肉量

6. 体型評価

体型評価: 88.3

標準: >=70は合格, >=80は良好, >=90 優秀.

エキスパート分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

サブ健康動向の問題について

システム	測定項目	通常範囲	実測値	専門家のアドバイス
脳血管及び心血管	コレステロール結晶			
リウマチ性骨疾患	頸部石灰度			
微量元素	鉄			
ビタミン	ビタミン B3			
アミノ酸	トリプトファン			
免疫系	胸腺指標			
重金属	ヒ素			
	皮膚コラーゲンあ指標			
ED <i>哲</i>	皮膚脂質指標			
肌質	皮膚の水分損失			
	皮膚メラニン指標			
	目の周りのくま			
目	浮腫 (水腫)			
	眼精疲労			
コラーゲン	歯			
	循環系			
	運動系			

手分析レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

サブ健康動向の問題について

システム	測定項目	通常範囲	実測値	専門家のアドバイス
脳血管及び心 血管	コレステロール結 晶	56. 749 <i>-</i> 67. 522	69. 959	
リウマチ性骨 疾患	頸部石灰度	421 - 490	518. 78	
微量元素	鉄	1. 151 - 1. 847	0. 676	
ビタミン	ビタミン B3	14. 477–21. 348	11. 689	
アミノ酸	トリプトファン	2. 374 - 3. 709	6. 237	
免疫系	胸腺指標	58. 425 - 61. 213	55. 102	
重金属	ヒ素	0. 153 - 0. 621	1. 29	
	皮膚コラーゲンあ 指標	4. 471 - 6. 079	2. 049	
肌質	皮膚脂質指標	14. 477 <i>-</i> 21. 348	31. 747	
	皮膚の水分損失	2. 214 - 4. 158	6. 371	
	皮膚メラニン指標	0. 346 - 0. 501	0. 819	
	目の周りのくま	0. 831 - 3. 188	6. 279	
目	浮腫(水腫)	0. 332 - 0. 726	1. 295	
	眼精疲労	2. 017 - 5. 157	8. 47	
	歯	7. 245 - 8. 562	4. 766	
コラーゲン	循環系	3. 586 - 4. 337	2. 156	
	運動系	6. 458 - 8. 133	3. 133	

総合レポート

名前:事例(女性) 性別:女性 年齢:31

体型: 1 6 5 cm, 6 2 kg 測定日時: 2013/10/16 13:10

サブ健康動向の問題について

システム	測定項目	通常範囲	実測値	専門家のアドバイス
脳血管及び心 血管	コレステロール結 晶	56. 749 - 67. 522	69. 959	職場でも家庭でも安定した精神 状態になる様に心掛け、血中脂 質を調整するキクラゲ、キノコ 類、野菜や果物を摂取しましょ う。またコレステロール、塩 分、脂肪分の高い食物は減らし ましょう。
リウマチ性骨 疾患	頸部石灰度	421 - 490	518. 78	豆類、大豆などの摂取を減ら し、刺激物やたばこ、アルコー ルは止めてください。
微量元素	鉄	1. 151 - 1. 847	0. 676	様々な食物から足りない微量元素を補いましょう。必要であれば薬やサプリメントを使用してください。
ビタミン	ビタミン B3	14. 477–21. 348	11. 689	様々な食物から足りない微量元素を補って下さい。必要に応じて薬やサプリメントを使用してください。
アミノ酸	トリプトファン	2. 374 - 3. 709	6. 237	ほかの食品にくらべ、フライ と豊富に含む食物は、ドジョ まっている ボース はい カ、マコ、カ、ボジョ 3 は、ボース はい できます。 また、 なども まかの できます。 ボナナなども ほかを きゅう でき くのアミノ酸を きゅう かいます。
免疫系	胸腺指標	58. 425 - 61. 213	55. 102	環境に適応することを心がけ、 楽天的な気持ちを保つ様にしま しょう。また、健康を保つため 友人や同僚と意義のあるアクティビティを一緒にする様にしま しょう。
重金属	ヒ素	0. 153 - 0. 621	1. 29	日々の生活の中で、空気中の沢山の重金属を吸い込んでいます。検知するのは難しいですが、少しでも吸収を抑える為、かぼちゃ、キノコ、海藻を食べ、化粧品の種類を減らし、水を飲む際はガラス製品を使用しましょう。
	皮膚コラーゲンあ 指標	4. 471 - 6. 079	2. 049	ビタミンCを豊富に含む野菜や 果物を食べる様にしてくださ
肌質	皮膚脂質指標	14. 477 <i>-</i> 21. 348	31. 747	い。ただし、光に繊細な食品、赤かぶ、キャラウェイ、セロリなどをは減らす様にしてくださ
	皮膚の水分損失	2. 214 - 4. 158	6. 371	い。紫外線から身を守る為、太

	 皮膚メラニン指標 	0.346 - 0.501	0. 819	陽光を浴びすぎないようにして ください。
目	目の周りのくま	0. 831 - 3. 188	6. 279	正しいアイケア製品を選び、適切な睡眠をとり、肝臓や腎臓に
	浮腫(水腫)	0. 332 - 0. 726	1. 295	良いものやコラーゲンを含む食
	眼精疲労	2. 017 - 5. 157	8. 47	品(煮込み料理など)や飲料を
コラーゲン	歯	7. 245 - 8. 562	4. 766	コラーゲンを豊富に含む食品、 牛すじ、豚足、羊足、手羽先、 鶏皮、魚の皮、軟骨などをより
	循環系	3. 586 - 4. 337	2. 156	食べる様にして下さい。また、 ビタミンCを豊富に含む食品を 一緒に食べ、吸収を助ける様に
	運動系	6. 458 - 8. 133	3. 133	しましょう。もしに応じてコラ ーゲンのサプリメントを摂取し てください。